Abstract
Centerline (curve skeleton) is a frequently used skeleton-like shape descriptor for 3D tubular objects. This paper proposes an endpoint-based sequential curve-thinning algorithm (i.e., an iterative object reduction technique to obtain the centerline) for binary objects sampled on the face-centered cubic (FCC) grid. In order to ensure the centeredness of the resulting centerline, the thinning process is driven by distance transform. The introduced method is evaluated on distance maps computed with various distance definitions (i.e., chamfer or Euclidean distance). To the best of our knowledge, the reported algorithm is the very first curve-thinning method for the FCC grid.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Arcelli, C., di Baja, G.S., Serino, L.: Distance-driven skeletonization in voxel images. IEEE Trans. Pattern Anal. Mach. Intell. 33(4), 709–720 (2011). https://doi.org/10.1109/TPAMI.2010.140
Biswas, R., Largeteau-Skapin, G., Zrour, R., Andres, E.: Digital objects in rhombic dodecahedron grid. Math. Morphol. Theory Appl. 4(1), 143–158 (2020)
Borgefors, G.: Distance transformations in arbitrary dimensions. Comput. Vision Graph. Image Process. 27(3), 321–345 (1984)
Borgefors, G., Nyström, I., di Baja, G.S.: Discrete skeletons from distance transforms in 2D and 3D. In: Siddiqi, K., Pizer, S.M. (eds.) Medial Representations. Computational Imaging and Vision, vol. 37, Springer, Dordrecht (2008). https://doi.org/10.1007/978-1-4020-8658-8_5
Čomić, L., Magillo, P.: Repairing 3D binary images using the FCC grid. J. Math. Imaging Vision 61, 1301–1321 (2019)
Čomić, L., Magillo, P.: On hamiltonian cycles in the FCC grid. Comput. Graph. 89, 88–93 (2020)
Fouard, C., Strand, R., Borgefors, G.: Weighted distance transforms generalized to modules and their computation on point lattices. Pattern Recogn. 40(9), 2453–2474 (2007)
Gau, C.J., Kong, T.Y.: Minimal nonsimple sets of voxels in binary pictures on a face-centered cubic grid. Int. J. Pattern Recogn. Artif. Intell. 13(4), 485–502 (1999)
Kittel, C.: Crystal structures. In: Kittel, C. (ed.) Introduction to Solid State Physics, 8th edn. Wiley, New York (2004)
Kong, T.Y.: On topology preservation in 2-D and 3-D thinning. Int. J. Pattern Recogn. Artif. Intell. 9(5), 813–844 (1995)
Kong, T.Y., Rosenfeld, A.: Digital topology: Introduction and survey. Comput. Vision Graph. Image Process. 48(3), 357–393 (1989)
Lam, L., Lee, S.W., Suen, C.Y.: Thinning methodologies - a comprehensive survey. IEEE Trans. Pattern Anal. Mach. Intell. 14(9), 869–885 (1992)
Marchand-Maillet, S., Sharaiha, Y.M.: Binary Digital picture Processing: A Discrete Approach. Academic Press (2000). https://doi.org/10.1016/B978-0-12-470505-0.X5000-X
Palágyi, K.: A 3D fully parallel surface-thinning algorithm. Theor. Comput. Sci. 406(1–2), 119–135 (2008)
Saha, P.K., Borgefors, G., di Baja, G.S.: A survey on skeletonization algorithms and their applications. Pattern Recogn. Lett. 76(1), 3–12 (2016)
Saha, P.K., Borgefors, G., di Baja, G.S.: Skeletonization: Theory, Methods and Applications, 1st edn. Academic Press, Cambridge (2017)
Saito, T., Toriwaki, J.: A sequential thinning algorithm for three dimensional digital pictures using the Euclidean distance transformation. In: Proceedings 9th Scandinavian Conference on Picture Analysis, Uppsala, Sweden, pp. 507–516 (1995)
Sobiecki, A., Jalba, A., Telea, A.: Comparison of curve and surface skeletonization methods for voxel shapes. Pattern Recogn. Lett. 47, 147–156 (2014)
Strand, R.: The euclidean distance transform applied to the FCC and BCC grids. In: Marques, J.S., Pérez de la Blanca, N., Pina, P. (eds.) IbPRIA 2005. LNCS, vol. 3522, pp. 243–250. Springer, Heidelberg (2005). https://doi.org/10.1007/11492429_30
Strand, R.: The face-centered cubic grid and the body-centered cubic grid: a literature survey. Technical Report 35, Centre for Image Analysis, Uppsala University, Uppsala, Sweden (2005)
Strand, R., Borgefors, G.: Distance transforms for three-dimensional grids with non-cubic voxels. Comput. Vision Image Underst. 100(3), 294–311 (2005)
Strand, R., Nagy, B., Borgefors, G.: Digital distance functions on three-dimensional grids. Theor. Comput. Sci. 412(15), 1350–1363 (2011)
Strand, R., Stelldinger, P.: Topology preserving marching cubes-like algorithms on the face-centered cubic grid. In: Proceedings 14th International Conference on Image Analysis and Processing (ICIAP), Modena, Italy, pp. 781–788 (2007)
Svensson, S.: Reversible surface skeletons of 3D objects by iterative thinning of distance transforms. In: Bertrand, G., Imiya, A., Klette, R. (eds.) Digital and Image Geometry. LNCS, vol. 2243, pp. 400–411. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45576-0_24
Svensson, S., Borgefors, G.: Digital distance transforms in 3D images using information from neighbourhoods up to \(5\times 5\times 5\). Comput. Vision Image Underst. 88(1), 24–53 (2002). https://doi.org/10.1006/cviu.2002.0976
Acknowledgements
Project no. TKP2021-NVA-09 has been implemented with the support provided by the Ministry of Innovation and Technology of Hungary from the National Research, Development and Innovation Fund, financed under the TKP2021-NVA funding scheme.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Karai, G. (2022). Distance-Driven Curve-Thinning on the Face-Centered Cubic Grid. In: Baudrier, É., Naegel, B., Krähenbühl, A., Tajine, M. (eds) Discrete Geometry and Mathematical Morphology. DGMM 2022. Lecture Notes in Computer Science, vol 13493. Springer, Cham. https://doi.org/10.1007/978-3-031-19897-7_28
Download citation
DOI: https://doi.org/10.1007/978-3-031-19897-7_28
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19896-0
Online ISBN: 978-3-031-19897-7
eBook Packages: Computer ScienceComputer Science (R0)