Skip to main content

Distance-Driven Curve-Thinning on the Face-Centered Cubic Grid

  • Conference paper
  • First Online:
Discrete Geometry and Mathematical Morphology (DGMM 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13493))

Abstract

Centerline (curve skeleton) is a frequently used skeleton-like shape descriptor for 3D tubular objects. This paper proposes an endpoint-based sequential curve-thinning algorithm (i.e., an iterative object reduction technique to obtain the centerline) for binary objects sampled on the face-centered cubic (FCC) grid. In order to ensure the centeredness of the resulting centerline, the thinning process is driven by distance transform. The introduced method is evaluated on distance maps computed with various distance definitions (i.e., chamfer or Euclidean distance). To the best of our knowledge, the reported algorithm is the very first curve-thinning method for the FCC grid.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arcelli, C., di Baja, G.S., Serino, L.: Distance-driven skeletonization in voxel images. IEEE Trans. Pattern Anal. Mach. Intell. 33(4), 709–720 (2011). https://doi.org/10.1109/TPAMI.2010.140

    Article  Google Scholar 

  2. Biswas, R., Largeteau-Skapin, G., Zrour, R., Andres, E.: Digital objects in rhombic dodecahedron grid. Math. Morphol. Theory Appl. 4(1), 143–158 (2020)

    MATH  Google Scholar 

  3. Borgefors, G.: Distance transformations in arbitrary dimensions. Comput. Vision Graph. Image Process. 27(3), 321–345 (1984)

    Article  Google Scholar 

  4. Borgefors, G., Nyström, I., di Baja, G.S.: Discrete skeletons from distance transforms in 2D and 3D. In: Siddiqi, K., Pizer, S.M. (eds.) Medial Representations. Computational Imaging and Vision, vol. 37, Springer, Dordrecht (2008). https://doi.org/10.1007/978-1-4020-8658-8_5

  5. Čomić, L., Magillo, P.: Repairing 3D binary images using the FCC grid. J. Math. Imaging Vision 61, 1301–1321 (2019)

    Article  MathSciNet  Google Scholar 

  6. Čomić, L., Magillo, P.: On hamiltonian cycles in the FCC grid. Comput. Graph. 89, 88–93 (2020)

    Article  Google Scholar 

  7. Fouard, C., Strand, R., Borgefors, G.: Weighted distance transforms generalized to modules and their computation on point lattices. Pattern Recogn. 40(9), 2453–2474 (2007)

    Article  Google Scholar 

  8. Gau, C.J., Kong, T.Y.: Minimal nonsimple sets of voxels in binary pictures on a face-centered cubic grid. Int. J. Pattern Recogn. Artif. Intell. 13(4), 485–502 (1999)

    Article  Google Scholar 

  9. Kittel, C.: Crystal structures. In: Kittel, C. (ed.) Introduction to Solid State Physics, 8th edn. Wiley, New York (2004)

    Google Scholar 

  10. Kong, T.Y.: On topology preservation in 2-D and 3-D thinning. Int. J. Pattern Recogn. Artif. Intell. 9(5), 813–844 (1995)

    Article  Google Scholar 

  11. Kong, T.Y., Rosenfeld, A.: Digital topology: Introduction and survey. Comput. Vision Graph. Image Process. 48(3), 357–393 (1989)

    Article  Google Scholar 

  12. Lam, L., Lee, S.W., Suen, C.Y.: Thinning methodologies - a comprehensive survey. IEEE Trans. Pattern Anal. Mach. Intell. 14(9), 869–885 (1992)

    Article  Google Scholar 

  13. Marchand-Maillet, S., Sharaiha, Y.M.: Binary Digital picture Processing: A Discrete Approach. Academic Press (2000). https://doi.org/10.1016/B978-0-12-470505-0.X5000-X

  14. Palágyi, K.: A 3D fully parallel surface-thinning algorithm. Theor. Comput. Sci. 406(1–2), 119–135 (2008)

    Article  MathSciNet  Google Scholar 

  15. Saha, P.K., Borgefors, G., di Baja, G.S.: A survey on skeletonization algorithms and their applications. Pattern Recogn. Lett. 76(1), 3–12 (2016)

    Article  Google Scholar 

  16. Saha, P.K., Borgefors, G., di Baja, G.S.: Skeletonization: Theory, Methods and Applications, 1st edn. Academic Press, Cambridge (2017)

    Google Scholar 

  17. Saito, T., Toriwaki, J.: A sequential thinning algorithm for three dimensional digital pictures using the Euclidean distance transformation. In: Proceedings 9th Scandinavian Conference on Picture Analysis, Uppsala, Sweden, pp. 507–516 (1995)

    Google Scholar 

  18. Sobiecki, A., Jalba, A., Telea, A.: Comparison of curve and surface skeletonization methods for voxel shapes. Pattern Recogn. Lett. 47, 147–156 (2014)

    Article  Google Scholar 

  19. Strand, R.: The euclidean distance transform applied to the FCC and BCC grids. In: Marques, J.S., Pérez de la Blanca, N., Pina, P. (eds.) IbPRIA 2005. LNCS, vol. 3522, pp. 243–250. Springer, Heidelberg (2005). https://doi.org/10.1007/11492429_30

    Chapter  Google Scholar 

  20. Strand, R.: The face-centered cubic grid and the body-centered cubic grid: a literature survey. Technical Report 35, Centre for Image Analysis, Uppsala University, Uppsala, Sweden (2005)

    Google Scholar 

  21. Strand, R., Borgefors, G.: Distance transforms for three-dimensional grids with non-cubic voxels. Comput. Vision Image Underst. 100(3), 294–311 (2005)

    Article  Google Scholar 

  22. Strand, R., Nagy, B., Borgefors, G.: Digital distance functions on three-dimensional grids. Theor. Comput. Sci. 412(15), 1350–1363 (2011)

    Article  MathSciNet  Google Scholar 

  23. Strand, R., Stelldinger, P.: Topology preserving marching cubes-like algorithms on the face-centered cubic grid. In: Proceedings 14th International Conference on Image Analysis and Processing (ICIAP), Modena, Italy, pp. 781–788 (2007)

    Google Scholar 

  24. Svensson, S.: Reversible surface skeletons of 3D objects by iterative thinning of distance transforms. In: Bertrand, G., Imiya, A., Klette, R. (eds.) Digital and Image Geometry. LNCS, vol. 2243, pp. 400–411. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45576-0_24

    Chapter  Google Scholar 

  25. Svensson, S., Borgefors, G.: Digital distance transforms in 3D images using information from neighbourhoods up to \(5\times 5\times 5\). Comput. Vision Image Underst. 88(1), 24–53 (2002). https://doi.org/10.1006/cviu.2002.0976

    Article  MATH  Google Scholar 

Download references

Acknowledgements

Project no. TKP2021-NVA-09 has been implemented with the support provided by the Ministry of Innovation and Technology of Hungary from the National Research, Development and Innovation Fund, financed under the TKP2021-NVA funding scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gábor Karai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Karai, G. (2022). Distance-Driven Curve-Thinning on the Face-Centered Cubic Grid. In: Baudrier, É., Naegel, B., Krähenbühl, A., Tajine, M. (eds) Discrete Geometry and Mathematical Morphology. DGMM 2022. Lecture Notes in Computer Science, vol 13493. Springer, Cham. https://doi.org/10.1007/978-3-031-19897-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19897-7_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19896-0

  • Online ISBN: 978-3-031-19897-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics