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Completions and Ramifications

Gilles Bertrand(B)

Univ Gustave Eiffel, CNRS, LIGM, 77454 Marne-la-Vallée, France

gilles.bertrand@esiee.fr

Abstract. We investigate ramifications, which are simplicial complexes
constructed with a very simple inductive property: if two complexes are
ramifications, then their union is a ramification whenever their intersec-
tion is a ramification. We show that the collection of all ramifications
properly contains the collection of all collapsible complexes and that
it is properly contained in the collection of all contractible complexes.
We introduce the notion of a ramification pair, which is a couple of
complexes satisfying also an inductive property. We establish a strong
relation between ramification pairs and ramifications. In particular, the
collection of ramification pairs is uniquely determined by the collection of
ramifications. Also we provide some relationships between ramification
pairs, collapsible pairs, and contractible pairs.

Keywords: Combinatorial topology · Ramifications · Contractibility ·
Collapse · Completions

1 Introduction

Simple homotopy, introduced by J. H. C. Whitehead in the early 1930’s, may be
seen as a refinement of the concept of homotopy [1]. Two simplicial complexes
are simple homotopy equivalent if one of them may be obtained from the other
by a sequence of elementary collapses and expansions.

Simple homotopy plays a fundamental role in combinatorial topology [1–3].
Also, many notions relative to homotopy in the context of computer imagery
rely on the collapse operation. In particular, this is the case for the notion of
a simple point, which is crucial for all image transformations that preserve the
topology of the objects [4–6].

In this paper, we investigate ramifications, which are simplicial complexes
constructed with a very simple inductive property: if two complexes are ram-
ifications, then their union is a ramification whenever their intersection is a
ramification.

It could be seen that the collection of all trees satisfies the above property.
Also, any complex of arbitrary dimension is a ramification whenever it is col-
lapsible, i.e., whenever it reduces to a single vertex with a sequence composed
solely of collapses.

Our main results include the following:

– We show that the collection R of all ramifications properly contains the collec-
tion E of all collapsible complexes. Also we show that R is properly contained
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in the collection H of all contractible complexes, i.e., all complexes that are
homotopy equivalent to a single vertex.

– We introduce the notion of a ramification pair, which is a couple of com-
plexes satisfying also an inductive property. We show there is a strong rela-
tion between the collection of all ramification pairs R̈ and R. In particular, R̈

is uniquely determined by R.
– We show that R̈ properly contains the collection of all collapsible pairs, and

that R̈ is properly contained in the collection of all contractible pairs.

The paper is organized as follows. First, we give some basic definitions for
simplicial complexes (Sect. 2) and simple homotopy (Sect. 3). Then, we recall
some facts relative to completions, which allow us to formulate inductive prop-
erties (Sect. 4). We investigate the containment relations between the collections
E, R, and H in Sect. 5. Then, we introduce the collection R̈ of ramification pairs
and give the fundamental relation between R̈ and R (Sect. 6). In Sect. 7, we make
clear the relations between R̈, collapsible pairs, and contractible pairs. Note that
the paper is self contained. Nevertheless, for the sake of place, several proofs are
not included, these proofs may be found in an online archive [11].

2 Basic Definitions for Simplicial Complexes

Let X be a finite family composed of finite sets. The simplicial closure of X is
the complex X− = {y ⊆ x | x ∈ X}. The family X is a (simplicial) complex if
X = X−. We write S for the collection of all finite simplicial complexes. Note
that ∅ ∈ S and {∅} ∈ S, ∅ is the void complex, and {∅} is the empty complex.

Let X ∈ S. An element of X is a simplex of X or a face of X. A facet
of X is a simplex of X that is maximal for inclusion. For example, the family
X = {∅, {a}, {b}, {a, b}} is a simplicial complex with four faces and one facet.
Note that the empty set is necessarily a face of X whenever X �= ∅.

A simplicial subcomplex of X ∈ S is any subset Y of X that is a simplicial
complex. If Y is a subcomplex of X, we write Y � X.

Let X ∈ S. The dimension of x ∈ X, written dim(x), is the number of
its elements minus one. The dimension of X, written dim(X), is the largest
dimension of its simplices, the dimension of ∅, the void complex, being defined
to be −1. Observe that the dimension of the empty complex {∅} is also −1.

A complex A ∈ S is a cell if A = ∅ or if A has precisely one non-empty
facet x. We set A◦ = A \ {x} and ∅◦ = ∅. We write C for the collection of all
cells. A cell α ∈ C is a vertex if dim(α) = 0.

The ground set of X ∈ S is the set X = ∪{x ∈ X | dim(x) = 0}. Thus, if
A ∈ C, with A �= ∅, then A is precisely the unique facet of A. In particular, if α
is a vertex, we have α = {∅, α}.
We say that X ∈ S and Y ∈ S are disjoint, or that X is disjoint from Y , if
X ∩Y = ∅. Thus, X and Y are disjoint if and only if X ∩Y = ∅ or X ∩Y = {∅}.

If X ∈ S and Y ∈ S are disjoint, the join of X and Y is the simplicial complex
XY such that XY = {x ∪ y | x ∈ X, y ∈ Y }. Thus, XY = ∅ if Y = ∅ and
XY = X if Y = {∅}. The join αX of a vertex α and a complex X ∈ S is a cone.
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3 Simple Homotopy

We recall some basic definitions related to the collapse operator [1].
Let X ∈ S and let x, y be two distinct faces of X. The couple (x, y) is a

free pair for X if y is the only face of X that contains x. Thus, the face y is
necessarily a facet of X. If (x, y) is a free pair for X, then Y = X \ {x, y} is
an elementary collapse of X, and X is an elementary expansion of Y . We say
that X collapses onto Y , or that Y expands onto X, if there exists a sequence
〈X0, ...,Xk〉 such that X0 = X, Xk = Y , and Xi is an elementary collapse of
Xi−1, i ∈ [1, k]. The complex X is collapsible if X collapses onto ∅. We say
that X is (simply) homotopic to Y , or that X and Y are (simply) homotopic, if
there exists a sequence 〈X0, ...,Xk〉 such that X0 = X, Xk = Y , and Xi is an
elementary collapse or an elementary expansion of Xi−1, i ∈ [1, k]. The complex
X is (simply) contractible if X is simply homotopic to ∅.

Let α = {∅, α} be an arbitrary vertex. We observe that (∅, α) is a free face
for α. Thus α collapses onto ∅, that is, the void complex. It follows that a complex
is contractible if and only if it is homotopic to a single vertex. Also a non-void
complex is collapsible if and only if it collapses onto a single vertex.

Remark 1. We observe that a complex X ∈ S, X �= ∅, is an elementary collapse
of a complex Z, if and only if we have Z = X ∪ γD and X ∩ γD = γD◦, where
D, D �= ∅, is a cell, and γ is a vertex disjoint from D. See also [1], p. 247.

Let X,Y ∈ S, and α be a vertex disjoint from X ∪ Y . We can check that:

1) If x, y ∈ X \Y , then (x, y) is a free pair for X iff (x, y) is a free pair for X ∪Y .
2) If x ∈ X \ Y is a facet of X, then (x, α ∪ x) is a free pair for αX ∪ Y .
3) If x, y ∈ X, then the couple (x, y) is a free pair for X if and only if (α∪x, α∪y)

is a free pair for αX ∪ Y .

By induction, we have the following results which will be used in this paper.

Proposition 1. Let X,Y ∈ S. The complex X collapses onto X ∩Y if and only
if X ∪ Y collapses onto Y .

Proposition 2. Let X,Y ∈ S, and let α be a vertex disjoint from X ∪ Y .
The complex αX ∪ Y collapses onto α(X ∩ Y ) ∪ Y .
In particular, the complex αX collapses onto ∅. Thus any cone is collapsible.

Proposition 3. Let X,Y ∈ S, Z � X, let α be a vertex disjoint from X ∪ Y .
The complex X collapses onto Z if and only if αX∪Y collapses onto αZ∪X∪Y .
In particular, if X is collapsible, then αX ∪ Y collapses onto X ∪ Y .

4 Completions

We give some basic definitions for completions. A completion may be seen as a
rewriting rule that permits to derive collections of sets. See [7] for more details.
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Let S be a given collection and let K be an arbitrary subcollection of S.
Thus, we have K ⊆ S. In the sequel of the paper, the symbol K, with possible
superscripts, will be a dedicated symbol (a kind of variable).

Let K be a binary relation on 2S, thus K ⊆ 2S×2S. We say that K is finitary,
if F is finite whenever (F,G) ∈ K.
Let 〈K〉 be a property that depends on K. We say that 〈K〉 is a completion (on
S) if 〈K〉 may be expressed as the following property:

−> If F ⊆ K, then G ⊆ K whenever (F,G) ∈ K. 〈K〉
where K is a finitary binary relation on 2S.
If 〈K〉 is a property that depends on K, we say that a given collection X ⊆ S
satisfies 〈K〉 if the property 〈K〉 is true for K = X.

Theorem 1 (from [7]). Let 〈K〉 be a completion on S and let X ⊆ S. There
exists, under the subset ordering, a unique minimal collection that contains X
and that satisfies 〈K〉.

If 〈K〉 is a completion on S and if X ⊆ S, we write 〈X; K〉 for the unique
minimal collection that contains X and that satisfies 〈K〉. We say that 〈X; K〉 is
a completion system and that X is the starting collection of 〈X; K〉.

Let 〈K1〉, 〈K2〉, ..., 〈Kk〉 be completions on S. We write ∧ for the logical “and”.
It may be seen that 〈K〉 = 〈K1〉∧〈K2〉...∧〈Kk〉 is a completion. In the sequel, we
write 〈K1,K2, ...,Kk〉 for 〈K〉. Thus, if X ⊆ S, the notation 〈X; K1,K2, ...,Kk〉
stands for the smallest collection that contains X and that satisfies each of the
properties 〈K1〉, 〈K2〉, ..., 〈Kk〉. We observe that, if 〈K〉 and 〈Q〉 are two comple-
tions on S, then we have 〈X; K〉 ⊆ 〈X; K,Q〉 whenever X ⊆ S.

5 Ramifications

5.1 Definition

The notion of a dendrite was introduced in [7] as a way for defining a collection
made of acyclic complexes. Let us consider the collection S = S, and let K denote
an arbitrary collection of simplicial complexes.

We define the two completions 〈R〉 and 〈D〉 on S: For any S, T ∈ S,
−> If S, T ∈ K, then S ∪ T ∈ K whenever S ∩ T ∈ K. 〈R〉
−> If S, T ∈ K, then S ∩ T ∈ K whenever S ∪ T ∈ K. 〈D〉

Let D = 〈C;R,D〉. Each element of D is a dendrite or an acyclic complex.
We have the general result [7]:

A non-void complex is a dendrite iff it is acyclic in the sense of homology.
We set R = 〈C;R〉. Each element of R is a ramification. Thus, the collection

R is the unique minimal collection that contains C and that satisfies the prop-
erty 〈R〉. Also, the collection R is the very collection that may be obtained by
starting from K = C, and by iteratively adding to K all the sets S ∪T such that
S, T ∈ K and S ∩ T ∈ K.

Note that the notion of a ramification corresponds to the buildable complexes
introduced by J. Jonsson [3]. Here, we have a formulation in terms of completions.
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The collection of all cones provides a basic example of ramifications. If a cone
αZ has more than one facet, then it may be split in two distinct cones αX and
αY such that αZ = αX∪αY . Since αX∩αY is a cone, and αZ is a cell whenever
αZ has a single facet, it follows by induction that any cone is a ramification.

5.2 Ramifications and Collapsible Complexes

Let us denote by E the collection of all complexes X such that ∅ expands onto X,
i.e., such that X is collapsible. This collection may be described by completions.
See Sec. 6 of [7] and Sec. 8 of [10]. Now let us consider the alternative definition
of an elementary collapse given in Remark 1. If X ∈ S, X �= ∅, is an elementary
collapse of Z, then we have Z = X ∪ Y , where Y and X ∩ Y are cones. Since
cones are ramifications, and since the void complex is a ramification, we can
again prove by induction that any collapsible complex is a ramification. Thus,
we have E ⊆ R. See [7] and [10] (Sec. 8). See also [3] (Def. 3.14 and Prop. 5.17)
where a slightly different definition of a collapsible complex is used.

The Bing’s house [13] is a classical example of an object that is contractible
but not collapsible, see Fig. 1(a). This two dimensional object is made of two
rooms. Two tunnels allow to enter to the upper room by the lower face, and to
the lower room by the upper face. Two small walls are attached to the tunnels
in order to make this object acyclic.

In [7], it was noticed that the Bing’s house B is a ramification. Let us consider
the two complexes B1 and B2 of Fig. 1(b) and (c). We have B = B1 ∪ B2. If
B is correctly triangulated, then we can see that B1, B2, and B1 ∩ B2 are all
collapsible. Since E ⊆ R, these three complexes are ramifications. Thus, the
Bing’s house B is a ramification. But the Bing’s house is not collapsible, in fact
there is nowhere we can start a collapse sequence. In consequence, the inclusion
E ⊆ R is strict.

5.3 Ramifications and Contractible Complexes

Now, let us consider the collection H made of all contractible complexes. We
have H ⊆ D, this inclusion is strict (see [10]).

It was shown (Prop. 5.17 of [3]) that any buildable complex (or any ram-
ification) is contractible. The arguments given for the proof are based on the

Fig. 1. (a): A Bing’s house B with two rooms, (b): An object B1 ⊆ B, (c): An object
B2 ⊆ B. We have B = B1 ∪ B2, the object B1 ∩ B2 is outlined in (b) and (c).
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Hurewicz theorem (Th. 4.32 of [15]). It follows that these arguments do not
allow to build an effective sequence of collapses and expansions that transform
any ramification into the void complex. In fact, it is undecidable to determine
whether a finite simplicial complex is contractible or not (for example see [16],
Appendix). Thus, such an effective sequence cannot, in general, be given.

In the extension of this paper (Appendix A of [11]), we provide a direct proof
that permits to build such a sequence. We illustrate an aspect of this proof with
the decomposition B = B1 ∪ B2 of the Bing’s house given Fig. 1.

Let α be a vertex disjoint from B. Since B1 is collapsible, B expands onto the
complex C = αB1 ∪ B2 (Proposition 3, by replacing collapses by expansions).
Now, we can collapse C onto the complex D = α(B1 ∩B2)∪B2 (Proposition 2).
Since B1 ∩ B2 is collapsible, the complex D collapses onto B2 (Proposition 3),
which is collapsible.

Thus, the sequence B ↗ αB1 ∪ B2 ↘ α(B1 ∩ B2) ∪ B2 ↘ B2 ↘ ∅ gives an
homotopic deformation between B and ∅; the symbol ↗ stands for expansions
and the symbol ↘ for collapses. Now, let us consider a complex B′ = B′

1 ∪ B′
2

where B′
1 and B′

2 are two copies of B such that B′
1 ∩ B′

2 is a ramification.
The complex B′ is a ramification but, since B′

1 and B′
2 are not collapsible, the

above sequence is no longer valid. Furthermore, this process may be iterated by
considering two copies of B′, and so on. In the extension [11], we handle this
problem by proposing an inductive construction which, at each step, allows us
to perform the above sequence.

Thus, we have R ⊆ H. Are there contractible complexes that are not ramifi-
cation? This question corresponds to a conjecture formulated by J. Jonsson [3]
(Problem 5.21). We give a positive answer to this question in the Appendix B
of the extension of this paper [11]. The counter-example is given by the dunce
hat [14] which is another classical example of an object that is contractible but
not collapsible, see Fig. 2(a). See also Appendix A of this paper where the con-
tractibility of this object is shown. Note that we only proved that a specific
triangulation of the dunce hat is not a ramification. This leaves open the ques-
tion for any triangulation of this complex.

The following proposition summarizes the facts given in this section.

Proposition 4. We have E � R � H � D.

Fig. 2. (a): The dunce hat, the three edges of the triangle have to be identified with
the arrows, (b): a triangulation D of the dunce hat, (c): a subcomplex of D.



Completions and Ramifications 77

6 Ramification Pairs

In the last section, we mentioned some previously published results related to
ramifications. As far as we know these are the only ones that may be found in the
literature. By providing counter-examples, and by giving an appropriate homo-
topic deformation, we also clarified the link between ramifications, collapsible
and contractible complexes. Now, in order to achieve a better understanding of
these objects, we will extend the collection R to a collection R̈, which is com-
posed of couples of complexes. It should be noted that the following completion
〈˜R〉 has already been introduced in a previous paper [8]. Nevertheless, it was
always associated with another completion (its dual), so that all the following
results are new. Note that all the proofs of the results given in this section may
be found in the extension [11].

We set S̈ = {(X,Y ) | X,Y ∈ S,X � Y } and C̈ = {(A,B) ∈ S̈ | A,B ∈ C}.
The notation K̈ stands for an arbitrary subcollection of S̈.
We define the completion 〈˜R〉 on S̈: For any (S, T ), (S′, T ′) in S̈,
−> If (S, T ), (S′, T ′), (S ∩ S′, T ∩ T ′) ∈ K̈, then (S ∪ S′, T ∪ T ′) ∈ K̈. 〈˜R〉
We set R̈ = 〈C̈ ∪ Ï; ˜R〉, where Ï = {(X,X) | X ∈ S}.
Each couple of R̈ is a ramification pair.

In fact, the collection R̈ may be generated with a smaller starting collection.
We have R̈ = 〈C̈#; ˜R〉, where C̈

# = C̈ ∪ {({∅}, {∅})}, see the extension [11].
The four couples given in Fig. 3 correspond to the four couples appearing

in the definition of the completion 〈˜R〉. In this specific illustration, we observe
that, if (X,Y ) is one of these four couples, then Y collapses onto X (under an
appropriate triangulation).

We introduce the notion of a Δ-form, the symbol Δ corresponds to a binary
relation over S̈ and S.

Let (X,Y ) ∈ S̈ and Z ∈ S. We write Δ(X,Y,Z) if there exists a vertex α,
disjoint from Y , such that Z = αX ∪ Y . In this case, we write α(X,Y ) for the
complex Z, and we say that α(X,Y ) is a Δ-form. We also say that α(X,Y ) is
a Δ-form of (X,Y ) or a Δ-form of Z.

Fig. 3. Four couples (S, T ), (S′, T ′), (S∩S′, T∩T ′), (S∪S′, T∪T ′), that are ramification
pairs; S and S′ are two simple open curves, S ∩ S′ is made of two vertices.
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If Z ∈ S and α is an arbitrary vertex, it may be seen that there exists a
unique couple (X,Y ) ∈ S̈ such that Z = α(X,Y ). We have:

X = {x ∈ Z | x ∩ α = ∅ and x ∪ α ∈ Z} and Y = {x ∈ Z | x ∩ α = ∅}.
The complex X is the so-called link of the face α in Z, and Y is the so-called
deletion of α from Z, see [3]. Thus, we have:

α(X,Y ) = α(X ′, Y ′) if and only if (X,Y ) = (X ′, Y ′).
Note that we have X = ∅ and Y = Z whenever α is disjoint from Z.

We now clarify the correspondence between R̈ and R induced by Δ-forms:

1) If (X,Y ) ∈ S̈, then, up to a renaming of the vertex α, the couple (X,Y ) has
a unique Δ-form Z = α(X,Y ). Thus, up to this renaming, there is a unique
complex in S which is the Δ-form of a couple in S̈.

2) If Z ∈ S, and for a given α, there is a unique couple (X,Y ) such that Z =
α(X,Y ). Now, for all possible choices of α, we observe that there are precisely
k + 1 different such couples, where k is the number of vertices included in Z
(we have to consider the case where α is disjoint from Z). Thus, in general,
there are several different couples in S̈ which are the Δ-forms of a complex in
S.

Proposition 5. Let α(X ′, Y ′) and α(X ′′, Y ′′) be two Δ-forms.

1) We have α(X ′ ∪ X ′′, Y ′ ∪ Y ′′) = α(X ′, Y ′) ∪ α(X ′′, Y ′′).
2) We have α(X ′ ∩ X ′′, Y ′ ∩ Y ′′) = α(X ′, Y ′) ∩ α(X ′′, Y ′′).

By induction on R and R̈, Proposition 5 leads to the following relation
between these two collections.

Theorem 2. Let (X,Y ) ∈ S̈ and let Z ∈ S such that Δ(X,Y,Z).
We have (X,Y ) ∈ R̈ if and only if Z ∈ R.

Replacing X by ∅ in the previous theorem, we obtain the corollary:

Corollary 1. We have R = {X ∈ S | (∅,X) ∈ R̈}.
Let us consider an arbitrary collection K̈ ⊆ S̈. We define the kernel of K̈ as

the collection K = {X ∈ S | (∅,X) ∈ K̈}. We consider the two properties:

– If (X,Y ) ∈ K̈, then we have Z ∈ K whenever Δ(X,Y,Z). (∇)
– If Z ∈ K, then we have (X,Y ) ∈ K̈ whenever Δ(X,Y,Z). (Δ)

We say that K̈ is a ∇-structure if K̈ satisfies (∇).
We say that K̈ is a Δ-structure if K̈ satisfies both (∇) and (Δ).

Now, let us start from an arbitrary collection K ⊆ S.
We define K̈

+ = {(X,Y ) ∈ S̈ | α(X,Y ) ∈ K for some vertex α}.
By construction, the kernel of K̈

+ is precisely K and K̈
+ is a Δ-structure.

If K̈ ⊆ S̈ and the kernel of K̈ is K, then we have K̈ = K̈
+ whenever K̈ is a

Δ-structure. Thus, a Δ-structure is uniquely determined by its kernel.
Returning to the case of ramifications pairs, Theorem 2 shows that we have

R̈ = R̈
+. Thus, the kernel of R̈ is precisely the collection R, and the collection

R̈ is a Δ-structure.
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Informally, since R̈ is a Δ-structure, we recover a property that is satisfied
by the neighborhood (the link) of each vertex of an arbitrary ramification. If we
pick any vertex α in a ramification Z (for example a Bing’s house), then the
couple (X,Y ) such that Z = α(X,Y ) may be recursively decomposed by 〈˜R〉,
until an elementary couple.

7 Ramifications and the Five Completions

In previous works, we tried to build a framework, based on completions, for
unifying certain notions of combinatorial topology. It turns out that five com-
pletions, acting on S̈, appear to be particularly relevant for this purpose. In this
section, we wish to relate ramifications to these completions.

We recall the five completions (the symbols ˜T, ˜U, ˜L stand respectively for
“transitivity”, “upper confluence”, and “lower confluence”):
For any S, T ∈ S,
−> If (S ∩ T, T ) ∈ K̈, then (S, S ∪ T ) ∈ K̈. 〈˜X〉
−> If (S, S ∪ T ) ∈ K̈, then (S ∩ T, T ) ∈ K̈. 〈˜Y〉
For any (R,S), (S, T ), (R, T ) ∈ S̈,
−> If (R,S) ∈ K̈ and (S, T ) ∈ K̈, then (R, T ) ∈ K̈. 〈˜T〉
−> If (R,S) ∈ K̈ and (R, T ) ∈ K̈, then (S, T ) ∈ K̈. 〈˜U〉
−> If (R, T ) ∈ K̈ and (S, T ) ∈ K̈, then (R,S) ∈ K̈. 〈˜L〉

The largest collection is obtained by considering all the five completions.
Let D̈ = 〈C̈; ˜X, ˜Y, ˜T, ˜U, ˜L〉. Each couple of D̈ is a dyad or an acyclic pair.
In [8], we proved that D̈ is a Δ-structure and that the kernel of D̈ is precisely
the collection D of dendrites.

In this section, we focus our attention on collections based on a subset of
the five above completions. These completions are chosen because the kernel
of D̈ is D, which corresponds to the remarkable collection made of all acyclic
complexes. In particular, it includes all contractible complexes. We will use the
following fact.

Proposition 6. Let K̈ be a ∇-structure and L̈ be a Δ-structure. Let K and L

be the kernels of K̈ and L̈, respectively. If K ⊆ L, then we have K̈ ⊆ L̈.
Furthermore, if K � L, then K̈ � L̈.

Proof. Suppose K ⊆ L. Let (X,Y ) ∈ K̈. Since K̈ is a ∇-structure, α(X,Y ) ∈ K.
Thus α(X,Y ) ∈ L. But since L̈ be a Δ-structure, we have (X,Y ) ∈ L̈.
By the very definition of a kernel, if K̈ = L̈, then we must have K = L. ��

7.1 Ramification Pairs and Collapsibility

We denote by Ë the collection of all couples (X,Y ) ∈ S̈ such that the complex Y
collapses onto X. Thus, the kernel of Ë is precisely the collection E made of all
collapsible complexes. It has been shown [10] that Ë has an exact characterization
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with a subset of the five above completions. We have Ë = 〈�̈; ˜X, ˜T〉, where �̈ is
the collection composed of all all couples of cones (αX,αY ), with (X,Y ) ∈ S̈.

Let (X,Y ) ∈ Ë. Let Z = α(X,Y ). Since Y collapses onto X, the complex Z =
αX ∪ Y collapses onto the cone αX, which is collapsible. Thus Z is collapsible,
i.e., Z ∈ E. It means that Ë is a ∇-structure. Since E � R (Proposition 4) then,
by Proposition 6, we have Ë � R̈.

Now, we consider the collection Ë
+, which is a Δ-structure. By definition of

a collection K̈
+, a couple (X,Y ) is in Ë

+ if and only if α(X,Y ) = αX ∪ Y is
collapsible. Thus, the kernel of Ë

+ is also the collection E and, by Proposition 6,
we have Ë ⊆ Ë

+. One may ask whether we have Ë = Ë
+. A positive answer

would imply that Ë is a Δ-structure. In fact this equality does not hold.
We have the following counter-example. Let Y be the complex depicted

Fig. 2(c), and let X be the closed curve that is outlined. It may be seen that Y
collapses onto X. The first steps of a possible sequence of elementary collapses
are depicted by arrows. Let X ′ = X ∪ {{1}, {1, 3}}, let α be a new vertex, and
let Z = αX ′ ∪ Y . We observe that ({α, 1}, {α, 1, 3}) is a free pair for Z. Thus Z
collapses onto Z ′ = αX ∪ Y . But, since Y collapses onto X, Z ′ collapses onto
αX, thus Z collapses onto αX. Since the cone αX is collapsible, the complex Z
is collapsible. Thus α(X ′, Y ) ∈ E, it means that (X ′, Y ) ∈ Ë

+. But Y does not
collapse onto X ′ since there is nowhere to start the collapse. Thus (X ′, Y ) �∈ Ë.

In consequence the inclusion Ë ⊆ Ë
+ is strict. The collection Ë is a ∇-

structure but not a Δ-structure.
Again, since the kernel of Ë

+ is a proper subset of the kernel of R̈, by Propo-
sition 6, we may assert that Ë

+ ⊆ R̈ and that this inclusion is strict. Thus,
starting from Ë, we have build a new collection Ë

+ which allows us to be closer
to R̈.

7.2 Ramification Pairs and Contractibility

We consider the collection Ẅ such that a couple (X,Y ) is in Ẅ if and only if
α(X,Y ) = αX∪Y is contractible. By construction Ẅ is a Δ-structure, the kernel
of Ẅ is precisely the collection H made of all contractible complexes. Again, it
has been shown (Theorem 5 of [10]) that Ẅ admits an exact characterization
with a subset of the five above completions. We have Ẅ = 〈C̈; ˜X, ˜Y, ˜T, ˜U〉.

We see that Ẅ ⊆ D̈, this inclusion is strict [10].
Since R is a proper subset of H, by Proposition 6, we have R̈ ⊆ Ẅ, and this

inclusion is strict.

7.3 Properties Related to the Five Completions

The following theorem summarizes the results given above.

Theorem 3. We have Ë � Ë
+

� R̈ � Ẅ � D̈.

We emphasize that the collections Ë, Ẅ, D̈, have an exact characterization
based on the five completions. It means that these collections are fully described
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by global properties. The collections Ë and Ë
+ are closely related since they have

the same kernel E which is made of all collapsible complexes. Also it is worth
pointing out that each couple in the collections Ë, Ë

+, Ẅ, may be obtained
by a sequence of local operations. Collapses/expansions and perforations/fillings
(introduced in [10]) are sufficient for that purpose.

In the above sections, completions appeared as components of certain com-
pletion systems 〈X; K〉. Here, we consider a completion as a property by itself.

Proposition 7. The collection R̈ satisfies the properties 〈˜X〉 and 〈˜U〉.
Proof

1) Let S, T ∈ S such that (S∩T, T ) ∈ R̈. Since Ï ⊆ R̈, we have (S∩T, T ), (S, S),
(S ∩ T, S ∩ T ) ∈ R̈. Thus, by 〈˜R〉, we obtain (S, S ∪ T ) ∈ R̈; the collection R̈

satisfies 〈˜X〉.
2) Let (R,S), (S, T ), (R, T ) ∈ S̈ such that (R,S) ∈ R̈ and (R, T ) ∈ R̈. Since

Ï ⊆ R̈, we have (R, T ), (S, S), (R ∩ S = R, T ∩ S = S) ∈ R̈. Thus, by 〈˜R〉, we
obtain (S, T ) ∈ R̈; the collection R̈ satisfies 〈˜U〉. ��
Now we give two counter-examples which show that the collection R̈ does

not satisfy the properties 〈˜L〉 and 〈˜T〉.
The complex D represents the triangulation of the dunce hat given Fig. 2(b).

1) The complex D is contractible. By Theorem 5 of [1] (and also by Proposition
6 of [9]), there exists Y such that Y collapses onto D and Y is collapsible. It
follows that (D,Y ) ∈ R̈ and (∅, Y ) ∈ R̈. But, since D is not a ramification,
we have (∅,D) �∈ R̈. Thus R̈ does not satisfy 〈˜L〉.

2) Let Y be the complex depicted Fig. 2(c), and let X be the closed curve that
is outlined. We have pointed out, in Sect. 7.1, that Y collapses onto X. Let
X ′ = X ∪ {{1}, {1, 3}}. We see that X ′ collapses onto X. Thus, (X,Y ) ∈ R̈,
(X,X ′) ∈ R̈. Since R̈ satisfies 〈˜U〉, we have (X ′, Y ) ∈ R̈. Let γ be the vertex
corresponding to the label “1”. We have γX ∩ Y = X ′. Since R̈ satisfies 〈˜X〉,
we obtain (γX, γX ∪ Y ) ∈ R̈. But D = γX ∪ Y . We obtain (γX,D) ∈ R̈.
Since γX is a cone, we have (∅, γX) ∈ R̈. But we have not (∅,D) ∈ R̈. Thus
R̈ does not satisfy 〈˜T〉.
Thus, we proved the following. Note that the question remains open for the

property 〈˜Y〉.
Proposition 8. The collection R̈ satisfies none of the properties 〈˜L〉 and 〈˜T〉.

8 Conclusion

In this paper, we extended the collection R of ramifications to a collection R̈ of
ramification pairs. We followed an approach developed in earlier papers, where
we make a relation between a collection K̈ of couple of complexes and a collec-
tion K of complexes; K is the kernel of K̈ and K̈ is a structure on K.
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It’s turn out that R̈ has a noticeable property with respect to its kernel R.
In particular R̈ is uniquely determined by R.

We made a comparison between R̈ and two others collection Ë and Ẅ. The
kernel E of Ë corresponds to collapsible complexes and the kernel H of Ẅ consists
of all contractible complexes. We showed that Ë � R̈ � Ẅ.

The collection Ë is not uniquely determined by E. Thus, from E, we built
an extension Ë

+ of Ë. We showed that Ë � Ë
+

� R̈. Thus, starting from Ë, we
obtained a new collection Ë

+ which allows us to be closer to R̈.

A Appendix

In this appendix, we present a sequence of expansions and collapses which shows
the contractibility of the dunce hat. We give this sequence for the reader who
wants to better understand this object which is used several times in this paper
for crucial counter-examples.

Let D be the triangulation of the dunce hat of Fig. 2(b). Let X be the cell
whose facet is the set {3, 5, 6}, thus X ∩D is the closed curve that is highlighted
in (c). Let γ be the vertex corresponding to the label “1”, and let E = γX ∪ D.
The pair ({3, 5, 6}, {γ, 3, 5, 6}) is a free pair for E, thus D is an elementary
collapse of E. Let F be the complex given Fig. 2(c) and let G = F ∪ X. It may
be seen that E collapses onto G. First we remove the pair ({1, 3, 5}, {1, 3, 5, 6}),
then the pair ({1, 5}, {1, 5, 6}), then the pair ({1, 6}, {1, 6, 3}. Now we observe
that the complex G collapses onto the cell X, the first steps of a collapse sequence
are represented Fig. 2(c). Since X is collapsible, the following sequence shows the
contractibility of D:

D ↗ E ↘ G ↘ X ↘ ∅
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