Skip to main content

Core and Periphery as Closed-System Precepts for Engineering General Intelligence

  • Conference paper
  • First Online:
Artificial General Intelligence (AGI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13539))

Included in the following conference series:

Abstract

Engineering methods are centered around traditional notions of decomposition and recomposition that rely on partitioning the inputs and outputs of components to allow for component-level properties to hold after their composition. In artificial intelligence (AI), however, systems are often expected to influence their environments, and, by way of their environments, to influence themselves. Thus, it is unclear if an AI system’s inputs will be independent of its outputs, and, therefore, if AI systems can be treated as traditional components. This paper posits that engineering general intelligence requires new general systems precepts, termed the core and periphery, and explores their theoretical uses. The new precepts are elaborated using abstract systems theory and the Law of Requisite Variety. By using the presented material, engineers can better understand the general character of regulating the outcomes of AI to achieve stakeholder needs and how the general systems nature of embodiment challenges traditional engineering practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Note Eq. 2 specifically concerns the variety of outputs in the system’s core and periphery and the variety of inputs in the environment’s core and periphery.

References

  1. Alexander, S., Hibbard, B.: Measuring intelligence and growth rate: variations on Hibbard’s intelligence measure. J. Artif. Gen. Intell. 12(1), 1–25 (2021)

    Article  Google Scholar 

  2. Ashby, W.R.: An Introduction to Cybernetics. Chapman & Hall Ltd., London (1961)

    MATH  Google Scholar 

  3. Ashby, W.R.: Requisite variety and its implications for the control of complex systems. In: Facets of Systems Science, pp. 405–417. Springer, Boston (1991). https://doi.org/10.1007/978-1-4899-0718-9_28

  4. Beer, R.D.: Dynamical approaches to cognitive science. Trends Cogn. Sci. 4(3), 91–99 (2000)

    Article  Google Scholar 

  5. Beer, R.D.: The dynamics of active categorical perception in an evolved model agent. Adapt. Behav. 11(4), 209–243 (2003)

    Article  Google Scholar 

  6. Brooks, R.A.: Intelligence without representation. Artif. Intell. 47(1–3), 139–159 (1991)

    Article  Google Scholar 

  7. Brooks, R.A.: New approaches to robotics. Science 253(5025), 1227–1232 (1991)

    Article  Google Scholar 

  8. Chemero, A.: Radical embodied cognitive science. Rev. Gen. Psychol. 17(2), 145–150 (2013)

    Article  Google Scholar 

  9. Chollet, F.: On the measure of intelligence. arXiv preprint arXiv:1911.01547 (2019)

  10. Chomsky, N., et al.: On cognitive structures and their development: a reply to Piaget. In: Philosophy of Mind: Classical Problems/Contemporary Issues 751 (2006)

    Google Scholar 

  11. Cody, T.: Mesarovician abstract learning systems. In: Goertzel, B., Iklé, M., Potapov, A. (eds.) AGI 2021. LNCS (LNAI), vol. 13154, pp. 55–64. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-93758-4_7

    Chapter  Google Scholar 

  12. Friston, K.: The free-energy principle: a unified brain theory? Nat. Rev. Neurosci. 11(2), 127–138 (2010)

    Article  Google Scholar 

  13. Haken, H., Kelso, J.S., Bunz, H.: A theoretical model of phase transitions in human hand movements. Biol. Cybern. 51(5), 347–356 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  14. Haskins, C., Forsberg, K., Krueger, M.: Systems Engineering Handbook. INCOSE 9 (2006)

    Google Scholar 

  15. Hibbard, B.: Measuring agent intelligence via hierarchies of environments. In: Schmidhuber, J., Thórisson, K.R., Looks, M. (eds.) AGI 2011. LNCS (LNAI), vol. 6830, pp. 303–308. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22887-2_34

    Chapter  Google Scholar 

  16. Hutto, D.D., Myin, E.: Radicalizing Enactivism. Basic Minds Without Content. Cambridge (2013)

    Google Scholar 

  17. Klatt, K.U., Marquardt, W.: Perspectives for process systems engineering-personal views from academia and industry. Comput. Chem. Eng. 33(3), 536–550 (2009)

    Article  Google Scholar 

  18. Matthen, M.: Debunking enactivism: a critical notice of Hutto and Myin’s radicalizing enactivism. Can. J. Philos. 44(1), 118–128 (2014)

    Article  Google Scholar 

  19. Michaels, C.F., Palatinus, Z.: A ten commandments for ecological psychology. In: The Routledge Handbook of Embodied Cognition, pp. 19–28 (2014)

    Google Scholar 

  20. Pfeifer, R., Iida, F.: Embodied artificial intelligence: trends and challenges. In: Iida, F., Pfeifer, R., Steels, L., Kuniyoshi, Y. (eds.) Embodied Artificial Intelligence. LNCS (LNAI), vol. 3139, pp. 1–26. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27833-7_1

    Chapter  Google Scholar 

  21. Rydéhn, H.: Grounding and ontological dependence. Synthese 198(6), 1231–1256 (2021)

    Article  Google Scholar 

  22. Salado, A.: A systems-theoretic articulation of stakeholder needs and system requirements. Syst. Eng. 24(2), 83–99 (2021)

    Article  Google Scholar 

  23. Schick, L., Malmborg, L.: Bodies, embodiment and ubiquitous computing. Digit. Creat. 21(1), 63–69 (2010)

    Article  Google Scholar 

  24. Shapiro, L.: Embodied Cognition. Routledge, Abingdon (2019)

    Book  Google Scholar 

  25. Smith, L.B., Thelen, E.E.: A Dynamic Systems Approach to Development: Applications. The MIT Press, Cambridge (1993)

    Google Scholar 

  26. Spivey, M.: The Continuity of Mind. Oxford University Press, Oxford (2008)

    Google Scholar 

  27. Steels, L., Brooks, R.: The Artificial Life Route to Artificial Intelligence: Building Embodied, Situated Agents. Routledge, Abingdon (2018)

    Book  Google Scholar 

  28. Thelen, E., Schöner, G., Scheier, C., Smith, L.B.: The dynamics of embodiment: a field theory of infant perseverative reaching. Behav. Brain Sci. 24(1), 1–34 (2001)

    Article  Google Scholar 

  29. Thórisson, K.R., Bieger, J., Thorarensen, T., Sigurðardóttir, J.S., Steunebrink, B.R.: Why artificial intelligence needs a task theory. In: Steunebrink, B., Wang, P., Goertzel, B. (eds.) AGI -2016. LNCS (LNAI), vol. 9782, pp. 118–128. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41649-6_12

    Chapter  Google Scholar 

  30. Wang, P.: On defining artificial intelligence. J. Artif. Gen. Intell. 10(2), 1–37 (2019)

    Article  Google Scholar 

  31. Weinbaum, D., Veitas, V.: Open ended intelligence: the individuation of intelligent agents. J. Exp. Theor. Artif. Intell. 29(2), 371–396 (2017)

    Article  Google Scholar 

  32. Wymore, A.W.: A Mmathematical Theory of Systems Engineering: The Elements. Wiley, New York (1967)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tyler Cody .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cody, T., Shadab, N., Salado, A., Beling, P. (2023). Core and Periphery as Closed-System Precepts for Engineering General Intelligence. In: Goertzel, B., Iklé, M., Potapov, A., Ponomaryov, D. (eds) Artificial General Intelligence. AGI 2022. Lecture Notes in Computer Science(), vol 13539. Springer, Cham. https://doi.org/10.1007/978-3-031-19907-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19907-3_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19906-6

  • Online ISBN: 978-3-031-19907-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics