Skip to main content

Comparative Performance of Tree Based Machine Learning Classifiers in Product Backorder Prediction

  • Conference paper
  • First Online:
Intelligent Computing & Optimization (ICO 2022)

Abstract

Early prediction of whether a product will go to backorder or not is necessary for optimal management of inventory that can reduce the losses in sales, establish a good relationship between the supplier and customer and maximize the revenues. In this study, we have investigated the performance and effectiveness of tree based machine learning algorithms to predict the backorder of a product. The research methodology consists of preprocessing of data, feature selection using statistical hypothesis test, imbalanced learning using the random undersampling method and performance evaluating and comparing of four tree based machine learning algorithms including decision tree, random forest, adaptive boosting and gradient boosting in terms of accuracy, precision, recall, f1-score, area under the receiver operating characteristic curve and area under the precision and recall curve. Three main findings of this study are (1) random forest model without feature selection and with random undersampling method achieved the highest performance in terms of all performance measure metrics, (2) feature selection cannot contribute to the performance enhancement of the tree based classifiers, and (3) random undersampling method significantly improves performance of tree based classifiers in product backorder prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Acar, Y., Gardner, E.S., Jr.: Forecasting method selection in a global supply chain. Int. J. Forecast. 28(4), 842–848 (2012)

    Article  Google Scholar 

  2. Ahmed, F., Hossain, M.S., Islam, R.U., Andersson, K.: An evolutionary belief rule-based clinical decision support system to predict COVID-19 severity under uncertainty. Appl. Sci. 11(13), 5810 (2021)

    Article  Google Scholar 

  3. Belgiu, M., Drăguţ, L.: Random forest in remote sensing: a review of applications and future directions. ISPRS J. Photogramm. Remote. Sens. 114, 24–31 (2016)

    Article  Google Scholar 

  4. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

    Article  Google Scholar 

  5. Friedman, J.H.: Stochastic gradient boosting. Comput. Stat. Data Anal. 38(4), 367–378 (2002)

    Article  MathSciNet  Google Scholar 

  6. Guanghui, W.: Demand forecasting of supply chain based on support vector regression method. Procedia Eng. 29, 280–284 (2012)

    Article  Google Scholar 

  7. Guo, L., Wang, Y., Kong, D., Zhang, Z., Yang, Y.: Decisions on spare parts allocation for repairable isolated system with dependent backorders. Comput. Industr. Eng. 127, 8–20 (2019)

    Article  Google Scholar 

  8. Hasanin, T., Khoshgoftaar, T.: The effects of random undersampling with simulated class imbalance for big data. In: 2018 IEEE International Conference on Information Reuse and Integration (IRI), pp. 70–79. IEEE (2018)

    Google Scholar 

  9. He, H., Bai, Y., Garcia, E.A., Li, S.: Adasyn: adaptive synthetic sampling approach for imbalanced learning. In: 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), pp. 1322–1328. IEEE (2008)

    Google Scholar 

  10. Hossain, M.S., Ahmed, F., Andersson, K., et al.: A belief rule based expert system to assess tuberculosis under uncertainty. J. Med. Syst. 41(3), 1–11 (2017)

    Article  Google Scholar 

  11. Hossain, M.S., Habib, I.B., Andersson, K.: A belief rule based expert system to diagnose dengue fever under uncertainty. In: 2017 Computing Conference, pp. 179–186. IEEE (2017)

    Google Scholar 

  12. Hossain, M.S., Rahaman, S., Kor, A.L., Andersson, K., Pattinson, C.: A belief rule based expert system for datacenter PUE prediction under uncertainty. IEEE Trans. Sustain. Comput. 2(2), 140–153 (2017)

    Article  Google Scholar 

  13. Hossain, M.S., Rahaman, S., Mustafa, R., Andersson, K.: A belief rule-based expert system to assess suspicion of acute coronary syndrome (ACS) under uncertainty. Soft. Comput. 22(22), 7571–7586 (2018)

    Article  Google Scholar 

  14. Islam, R.U., Hossain, M.S., Andersson, K.: A deep learning inspired belief rule-based expert system. IEEE Access 8, 190637–190651 (2020)

    Article  Google Scholar 

  15. Islam, S., Amin, S.H.: Prediction of probable backorder scenarios in the supply chain using distributed random forest and gradient boosting machine learning techniques. J. Data 7(1), 1–22 (2020)

    Google Scholar 

  16. Lawal, S., Akintola, K.: A product backorder predictive model using recurrent neural network. Iconic Res. Eng. J. 4, 49–57 (2021)

    Google Scholar 

  17. Li, Y.: Backorder prediction using machine learning for Danish craft beer breweries. Ph.D. thesis, Aalborg University (2017)

    Google Scholar 

  18. Liu, B., Tsoumakas, G.: Dealing with class imbalance in classifier chains via random undersampling. Knowl.-Based Syst. 192, 105292 (2020)

    Google Scholar 

  19. Margineantu, D.D., Dietterich, T.G.: Pruning adaptive boosting. In: ICML, vol. 97, pp. 211–218. Citeseer (1997)

    Google Scholar 

  20. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  21. Safavian, S.R., Landgrebe, D.: A survey of decision tree classifier methodology. IEEE Trans. Syst. Man Cybern. 21(3), 660–674 (1991)

    Article  MathSciNet  Google Scholar 

  22. de Santis, R.B., de Aguiar, E.P., Goliatt, L.: Predicting material backorders in inventory management using machine learning. In: 2017 IEEE Latin American Conference on Computational Intelligence (LA-CCI), pp. 1–6. IEEE (2017)

    Google Scholar 

  23. Shajalal, M., Hajek, P., Abedin, M.Z.: Product backorder prediction using deep neural network on imbalanced data. Int. J. Prod. Res. 1–18 (2021)

    Google Scholar 

  24. Shin, K., Shin, Y., Kwon, J.H., Kang, S.H.: Development of risk based dynamic backorder replenishment planning framework using Bayesian belief network. Comput. Ind. Eng. 62(3), 716–25 (2012)

    Article  Google Scholar 

  25. Sustrova, T.: A suitable artificial intelligence model for inventory level optimization. Trends Econ. Manag. 10(25), 48–55 (2016)

    Article  Google Scholar 

  26. Ul Islam, R., Andersson, K., Hossain, M.S.: A web based belief rule based expert system to predict flood. In: Proceedings of the 17th International Conference on Information Integration and Web-Based Applications & Services, pp. 1–8 (2015)

    Google Scholar 

  27. Ul Islam, R., Hossain, M.S., Andersson, K.: A novel anomaly detection algorithm for sensor data under uncertainty. Soft Computing 22(5), 1623–1639 (2016). https://doi.org/10.1007/s00500-016-2425-2

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faisal Ahmed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ahmed, F., Hasan, M., Hossain, M.S., Andersson, K. (2023). Comparative Performance of Tree Based Machine Learning Classifiers in Product Backorder Prediction. In: Vasant, P., Weber, GW., Marmolejo-Saucedo, J.A., Munapo, E., Thomas, J.J. (eds) Intelligent Computing & Optimization. ICO 2022. Lecture Notes in Networks and Systems, vol 569. Springer, Cham. https://doi.org/10.1007/978-3-031-19958-5_54

Download citation

Publish with us

Policies and ethics