Abstract
In this article, the effect of UV irradiation of various ranges on the growth and development of Salvia officinalis L. plants was studied. Using vegetation indices, leaf microscopy, and assessment of plant growth and pigment composition, the stress level was assessed and the optimal lighting treatment for growing the sage plants in total control environment agriculture was determined. According to a complex of growth indicators, the best light treatment for Salvia officinalis L. of ‘Kubanets’ variety was additional UV-B irradiation (increase in fresh leaf mass 11.9%, dry mass 24.6%, leaf surface area 8, 5%). For the most effective assessment of the sage plant stress level, it is better to use the CRI1 and CRI2 indices, which correlate with the carotenoid content. The quantity and ratio of peltate trichomes, can also serve as an indirect method for assessing the sage stress status.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Hsieh, H., Lin, C.: Intelligent Medicinal Plant Factory 2019 Prognostics and System Health Management Conference (PHM-Paris), pp. 239–243 (2019). https://doi.org/10.1109/PHM-Paris.2019.00047
Kumari, R., Majeti, P.: Medicinal plant active compounds produced by UV-B exposure. Sustain. Agric. Rev. 225–254 (2013). https://doi.org/10.1007/978-94-007-5961-9_8
Christou, P.: From medicinal plants to medicines in plants: plant factories for the production of valuable pharmaceuticals. J. Curr. Pharm. Des. 19(31), 5469–5470 (2013). https://doi.org/10.2174/1381612811319310001
Vinogradov, A.V., et al.: Features of distributed energy integration in agriculture. In: Vasant, P., Zelinka, I., Weber, G.-W. (eds.) ICO 2020, vol. 1324, pp. 19–27. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68154-8_2
Kosti, M., et al.: Anti-inflammatory effect of the Salvia sclarea L. ethanolic extract on lipopolysaccharide-induced periodontitis in rats. J. Ethnopharmacol. 199, 52–59 (2017). https://doi.org/10.1016/j.jep.2017.01.020
Cui, H., Zhang, X., Zhou, H., Zhao, C., Lin, L.: Antimicrobial activity and mechanisms of Salvia sclarea essential oil. Bot. Stud. 56(1), 1–8 (2015). https://doi.org/10.1186/s40529-015-0096-4
Yuce, E., Yildirim, N., Yildirim, N.C., Paksoy, M.Y., Bagci, E.: Essential oil composition, antioxidant and antifungal activities of Salvia sclarea L. from Munzur Valley in Tunceli, Turkey. Cell. Mol. Biol. 60(2), 1–5 (2014)
Jirovetz, L., et al.: Antifungal activities of essential oils of Salvia lavandulifolia, Salvia officinalis and Salvia sclarea against various pathogenic Candida species. J. Essent. Oil Bear. Plants 10(5), 430–439 (2007). https://doi.org/10.1080/0972060X.2007.10643576
Walencka, E., Rozalska, S., Wysokinska, H., Rozalski, M., Kuzma, L., Rozalska, B.: Salvipisone and aethiopinone from Salvia sclarea hairy roots modulate staphylococcal antibiotic resistance and express anti-biofilm activity. Planta Med. 73(6), 545–551 (2007). https://doi.org/10.1055/s-2007-967179
Ogutcu, H., et al.: Bioactivities of the various extracts and essential oils of Salvia limbata CAMey. and Salvia sclarea L. Turk. J. Biol. 32(3), 181–192 (2008)
Yang, H.J., Kim, K.Y., Kang, P., Lee, H.S., Seol, G.H.: Effects of Salvia sclarea on chronic immobilization stress induced endothelial dysfunction in rats. BMC Complement. Altern. Med. 14, 396 (2014). https://doi.org/10.1186/1472-6882-14-396
Gross, M., Nesher, E., Tikhonov, T., Raz, O., Pinhasov, A.: Chronic food administration of salvia sclarea oil reduces animals’ anxious and dominant behavior. J. Med. Food 16(3), 216–222 (2013). https://doi.org/10.1089/jmf.2012.0137
Seol, G.H., et al.: Antidepressant-like effect of Salvia sclarea is explained by modulation of dopamine activities in rats. J. Ethnopharmacol. 130(1), 187–190 (2010). https://doi.org/10.1016/j.jep.2010.04.035
Caniard, A., et al.: Discovery and functional characterization of two diterpene synthases for sclareol biosynthesis in Salvia sclarea (L.) and their relevance for perfume manufacture. BMC Plant Biol. 12, 119 (2012). https://doi.org/10.1186/1471-2229-12-119
Park, J.E., Lee, K.E., Jung, E., Kang, S., Kim, Y.J.: Sclareol isolated from Salvia officinalis improves facial wrinkles via an antiphotoaging mechanism. J. Cosmet. Dermatol. 15(4), 475–483 (2016). https://doi.org/10.1111/jocd.12239
TirilliniI, B., Ricci, A., Pellegrino, R.: Secretion constituents of leaf glandular Trichome of Salvia officinalis L. J. Essent. Oil Res. 11(5) (1999). https://doi.org/10.1080/10412905.1999.9701215
Ioannidis, D., Bonner, L., Johnson, C.: UV‐B is required for normal development of oil glands in Ocimum basilicum L. (Sweet Basil). J. Ann. Bot. 90(4), 453–460 (2002). https://doi.org/10.1093/aob/mcf212
Bertram, L., Lercari, B.: The use of UV radiation to control the architecture of Salvia splendens plants .2. Relationships between PAR levels and UV radiation in the photoregulation of stem elongation. Photochem. Photobiol. 64(1), 131–136 (1996). https://doi.org/10.1111/j.1751-1097.1996.tb02432.x
Giannini, A., Pardossi, A., Lercari, B.: The use of UV radiation to control the architecture of Salvia splendens plants .1. Effects on plant growth, water relations and gas exchanged. Photochem. Photobiol. 64(1), 123–130 (1996). https://doi.org/10.1111/j.1751-1097.1996.tb02431.x
Blackburn, G.A.: Hyperspectral remote sensing of plant pigments. J. Exp. Bot. 58(4), 855–867 (2006). https://doi.org/10.1093/jxb/erl123
Uarrota, V.G., Stefen, D.L.V., Leolato, L.S., Gindri, D.M., Nerling, D.: Revisiting carotenoids and their role in plant stress responses: from biosynthesis to plant signaling mechanisms during stress. In: Gupta, D.K., Palma, J.M., Corpas, F.J. (eds.) Antioxidants and Antioxidant Enzymes in Higher Plants, pp. 207–232. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75088-0_10
Wettstein, D.: Chlorophyll letale und der submikroskopische Formwechsel der Plastiden. Exp. Cell Res. 12, 427–434 (1957)
Evans, J.R.: Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78(1), 9–19 (1989). https://doi.org/10.1007/bf00377192
Behmann, J., et al.: Specim IQ: evaluation of a new, miniaturized handheld hyperspectral camera and its application for plant phenotyping and disease detection. Sensors 18(2), 441 (2018). https://doi.org/10.3390/s18020441
Fischer, R., Nitzan, N., Chaimovitsh, D., Rubin, B., Dudai, N.: Variation in essential oil composition within individual leaves of sweet basil (Ocimum basilicum L.) is more affected by leaf position than by leaf age. J. Agric. Food Chem. 59, 4913–4922 (2011)
Semenova, N.A., et al.: Impact of ultraviolet radiation on the pigment content and essential oil accumulation in sweet basil (Ocimum basilicum L.) Appl. Sci. 12(14), 7190 (2022). https://doi.org/10.3390/app12147190
Sims, D.A., Gamon, J.A.: Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ. 81(2–3), 337–354 (2002). https://doi.org/10.1016/s0034-4257(02)00010-x
Gitelson, A.A., Zur, Y., Chivkunova, O.B., Merzlyak, M.N.: Assessing carotenoid content in plant leaves with reflectance spectroscopy. Photochem. Photobiol. 75(3), 272–281 (2007). https://doi.org/10.1562/0031-8655(2002)0750272accipl2.0.co2
Neugart, S., Schreiner, M.: UVB and UVA as eustressors in horticultural and agricultural crops. Sci. Hortic. 234, 370–381 (2018). https://doi.org/10.1016/j.scienta.2018.02.021
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Semenova, N. et al. (2023). Optimization of Salvia Officinalis L. Cultivation Using UV LEDs in Total Control Environment Agriculture. In: Vasant, P., Weber, GW., Marmolejo-Saucedo, J.A., Munapo, E., Thomas, J.J. (eds) Intelligent Computing & Optimization. ICO 2022. Lecture Notes in Networks and Systems, vol 569. Springer, Cham. https://doi.org/10.1007/978-3-031-19958-5_57
Download citation
DOI: https://doi.org/10.1007/978-3-031-19958-5_57
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19957-8
Online ISBN: 978-3-031-19958-5
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)