Skip to main content

Optimization of Salvia Officinalis L. Cultivation Using UV LEDs in Total Control Environment Agriculture

  • Conference paper
  • First Online:
Intelligent Computing & Optimization (ICO 2022)

Abstract

In this article, the effect of UV irradiation of various ranges on the growth and development of Salvia officinalis L. plants was studied. Using vegetation indices, leaf microscopy, and assessment of plant growth and pigment composition, the stress level was assessed and the optimal lighting treatment for growing the sage plants in total control environment agriculture was determined. According to a complex of growth indicators, the best light treatment for Salvia officinalis L. of ‘Kubanets’ variety was additional UV-B irradiation (increase in fresh leaf mass 11.9%, dry mass 24.6%, leaf surface area 8, 5%). For the most effective assessment of the sage plant stress level, it is better to use the CRI1 and CRI2 indices, which correlate with the carotenoid content. The quantity and ratio of peltate trichomes, can also serve as an indirect method for assessing the sage stress status.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hsieh, H., Lin, C.: Intelligent Medicinal Plant Factory 2019 Prognostics and System Health Management Conference (PHM-Paris), pp. 239–243 (2019). https://doi.org/10.1109/PHM-Paris.2019.00047

  2. Kumari, R., Majeti, P.: Medicinal plant active compounds produced by UV-B exposure. Sustain. Agric. Rev. 225–254 (2013). https://doi.org/10.1007/978-94-007-5961-9_8

  3. Christou, P.: From medicinal plants to medicines in plants: plant factories for the production of valuable pharmaceuticals. J. Curr. Pharm. Des. 19(31), 5469–5470 (2013). https://doi.org/10.2174/1381612811319310001

    Article  Google Scholar 

  4. Vinogradov, A.V., et al.: Features of distributed energy integration in agriculture. In: Vasant, P., Zelinka, I., Weber, G.-W. (eds.) ICO 2020, vol. 1324, pp. 19–27. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68154-8_2

    Chapter  Google Scholar 

  5. Kosti, M., et al.: Anti-inflammatory effect of the Salvia sclarea L. ethanolic extract on lipopolysaccharide-induced periodontitis in rats. J. Ethnopharmacol. 199, 52–59 (2017). https://doi.org/10.1016/j.jep.2017.01.020

    Article  Google Scholar 

  6. Cui, H., Zhang, X., Zhou, H., Zhao, C., Lin, L.: Antimicrobial activity and mechanisms of Salvia sclarea essential oil. Bot. Stud. 56(1), 1–8 (2015). https://doi.org/10.1186/s40529-015-0096-4

    Article  Google Scholar 

  7. Yuce, E., Yildirim, N., Yildirim, N.C., Paksoy, M.Y., Bagci, E.: Essential oil composition, antioxidant and antifungal activities of Salvia sclarea L. from Munzur Valley in Tunceli, Turkey. Cell. Mol. Biol. 60(2), 1–5 (2014)

    Google Scholar 

  8. Jirovetz, L., et al.: Antifungal activities of essential oils of Salvia lavandulifolia, Salvia officinalis and Salvia sclarea against various pathogenic Candida species. J. Essent. Oil Bear. Plants 10(5), 430–439 (2007). https://doi.org/10.1080/0972060X.2007.10643576

    Article  Google Scholar 

  9. Walencka, E., Rozalska, S., Wysokinska, H., Rozalski, M., Kuzma, L., Rozalska, B.: Salvipisone and aethiopinone from Salvia sclarea hairy roots modulate staphylococcal antibiotic resistance and express anti-biofilm activity. Planta Med. 73(6), 545–551 (2007). https://doi.org/10.1055/s-2007-967179

    Article  Google Scholar 

  10. Ogutcu, H., et al.: Bioactivities of the various extracts and essential oils of Salvia limbata CAMey. and Salvia sclarea L. Turk. J. Biol. 32(3), 181–192 (2008)

    Google Scholar 

  11. Yang, H.J., Kim, K.Y., Kang, P., Lee, H.S., Seol, G.H.: Effects of Salvia sclarea on chronic immobilization stress induced endothelial dysfunction in rats. BMC Complement. Altern. Med. 14, 396 (2014). https://doi.org/10.1186/1472-6882-14-396

    Article  Google Scholar 

  12. Gross, M., Nesher, E., Tikhonov, T., Raz, O., Pinhasov, A.: Chronic food administration of salvia sclarea oil reduces animals’ anxious and dominant behavior. J. Med. Food 16(3), 216–222 (2013). https://doi.org/10.1089/jmf.2012.0137

    Article  Google Scholar 

  13. Seol, G.H., et al.: Antidepressant-like effect of Salvia sclarea is explained by modulation of dopamine activities in rats. J. Ethnopharmacol. 130(1), 187–190 (2010). https://doi.org/10.1016/j.jep.2010.04.035

    Article  Google Scholar 

  14. Caniard, A., et al.: Discovery and functional characterization of two diterpene synthases for sclareol biosynthesis in Salvia sclarea (L.) and their relevance for perfume manufacture. BMC Plant Biol. 12, 119 (2012). https://doi.org/10.1186/1471-2229-12-119

    Article  Google Scholar 

  15. Park, J.E., Lee, K.E., Jung, E., Kang, S., Kim, Y.J.: Sclareol isolated from Salvia officinalis improves facial wrinkles via an antiphotoaging mechanism. J. Cosmet. Dermatol. 15(4), 475–483 (2016). https://doi.org/10.1111/jocd.12239

    Article  Google Scholar 

  16. TirilliniI, B., Ricci, A., Pellegrino, R.: Secretion constituents of leaf glandular Trichome of Salvia officinalis L. J. Essent. Oil Res. 11(5) (1999). https://doi.org/10.1080/10412905.1999.9701215

  17. Ioannidis, D., Bonner, L., Johnson, C.: UV‐B is required for normal development of oil glands in Ocimum basilicum L. (Sweet Basil). J. Ann. Bot. 90(4), 453–460 (2002). https://doi.org/10.1093/aob/mcf212

  18. Bertram, L., Lercari, B.: The use of UV radiation to control the architecture of Salvia splendens plants .2. Relationships between PAR levels and UV radiation in the photoregulation of stem elongation. Photochem. Photobiol. 64(1), 131–136 (1996). https://doi.org/10.1111/j.1751-1097.1996.tb02432.x

  19. Giannini, A., Pardossi, A., Lercari, B.: The use of UV radiation to control the architecture of Salvia splendens plants .1. Effects on plant growth, water relations and gas exchanged. Photochem. Photobiol. 64(1), 123–130 (1996). https://doi.org/10.1111/j.1751-1097.1996.tb02431.x

  20. Blackburn, G.A.: Hyperspectral remote sensing of plant pigments. J. Exp. Bot. 58(4), 855–867 (2006). https://doi.org/10.1093/jxb/erl123

    Article  Google Scholar 

  21. Uarrota, V.G., Stefen, D.L.V., Leolato, L.S., Gindri, D.M., Nerling, D.: Revisiting carotenoids and their role in plant stress responses: from biosynthesis to plant signaling mechanisms during stress. In: Gupta, D.K., Palma, J.M., Corpas, F.J. (eds.) Antioxidants and Antioxidant Enzymes in Higher Plants, pp. 207–232. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75088-0_10

    Chapter  Google Scholar 

  22. Wettstein, D.: Chlorophyll letale und der submikroskopische Formwechsel der Plastiden. Exp. Cell Res. 12, 427–434 (1957)

    Article  Google Scholar 

  23. Evans, J.R.: Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78(1), 9–19 (1989). https://doi.org/10.1007/bf00377192

    Article  Google Scholar 

  24. Behmann, J., et al.: Specim IQ: evaluation of a new, miniaturized handheld hyperspectral camera and its application for plant phenotyping and disease detection. Sensors 18(2), 441 (2018). https://doi.org/10.3390/s18020441

    Article  Google Scholar 

  25. Fischer, R., Nitzan, N., Chaimovitsh, D., Rubin, B., Dudai, N.: Variation in essential oil composition within individual leaves of sweet basil (Ocimum basilicum L.) is more affected by leaf position than by leaf age. J. Agric. Food Chem. 59, 4913–4922 (2011)

    Google Scholar 

  26. Semenova, N.A., et al.: Impact of ultraviolet radiation on the pigment content and essential oil accumulation in sweet basil (Ocimum basilicum L.) Appl. Sci. 12(14), 7190 (2022). https://doi.org/10.3390/app12147190

  27. Sims, D.A., Gamon, J.A.: Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ. 81(2–3), 337–354 (2002). https://doi.org/10.1016/s0034-4257(02)00010-x

    Article  Google Scholar 

  28. Gitelson, A.A., Zur, Y., Chivkunova, O.B., Merzlyak, M.N.: Assessing carotenoid content in plant leaves with reflectance spectroscopy. Photochem. Photobiol. 75(3), 272–281 (2007). https://doi.org/10.1562/0031-8655(2002)0750272accipl2.0.co2

    Article  Google Scholar 

  29. Neugart, S., Schreiner, M.: UVB and UVA as eustressors in horticultural and agricultural crops. Sci. Hortic. 234, 370–381 (2018). https://doi.org/10.1016/j.scienta.2018.02.021

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Semenova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Semenova, N. et al. (2023). Optimization of Salvia Officinalis L. Cultivation Using UV LEDs in Total Control Environment Agriculture. In: Vasant, P., Weber, GW., Marmolejo-Saucedo, J.A., Munapo, E., Thomas, J.J. (eds) Intelligent Computing & Optimization. ICO 2022. Lecture Notes in Networks and Systems, vol 569. Springer, Cham. https://doi.org/10.1007/978-3-031-19958-5_57

Download citation

Publish with us

Policies and ethics