Skip to main content

Performance Analysis of Multipath TCP Congestion Control Variants

  • Conference paper
  • First Online:
Technologies and Innovation (CITI 2022)

Abstract

The multiple interfaces in today’s modern devices hold great promise for improving the delivery of network services over wired or wireless networks. However, the IP-coupled nature of the TCP protocol inhibits the simultaneous use of these interfaces. Multipath TCP (MPTCP) has been developed to use multiple interfaces simultaneously to provide services over the Internet. MPTCP has been implemented on systems based on Linux distributions that can be compiled and installed for use in both live and experimental scenarios. In the present work, its performance was experimentally evaluated on a real environment in the TEMONET platform, the coupled congestion control algorithms available in the Linux kernel such as LIA, OLIA, BALIA, and wVEGAS were compared, in previous work good results were obtained results in its use, but the same was obtained on symmetric paths, it has been shown that low latency communication is difficult to achieve when a device has network interfaces with asymmetric capacity and delay. Despite these results, MPTCP is still a good alternative to optimize performance through load balancing and resilience to coverage drops and link failures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Meng, Q., Ren, F., Zhang, T.: Demystifying and Mitigating TCP Capping. In: 2022 IEEE/ACM 30. Simp. Int. sobre Calid. Serv. (2022)

    Google Scholar 

  2. Mondal, A., Bhattacharjee, S., Chakraborty, S.: Viscous: an end to end protocol for ubiquitous communication over internet of everything. In: Proc. – Conf. Local Comput. Networks, LCN, vol. 2017 Oct., pp. 312–320, 2017, doi: https://doi.org/10.1109/LCN.2017.79

  3. Tran, V.H., De Coninck, Q., Hesmans, B., Sadre, R., Bonaventure, O.: Observing real Multipath TCP traffic. Comput. Commun. 94, 114–122 (2016). https://doi.org/10.1016/j.comcom.2016.01.014

    Article  Google Scholar 

  4. Thakur, N.R., Kunte, A.S.: Analysing schedulers of multipath TCP in diverse environment. In: Proc. – 2021 3rd Int. Conf. Adv. Comput. Commun. Control Networking, ICAC3N 2021, pp. 1337–1340. https://doi.org/10.1109/ICAC3N53548.2021.9725523

  5. hjp: doc: RFC 6182: Architectural guidelines for multipath TCP development [Online]. Available: https://www.hjp.at/doc/rfc/rfc6182.html. Accessed 23 May 2022

  6. Rahgozar, N., Rahgozar, N., Moghadam, A.S., Aziminejad, A.: Performance evaluation of vol. 445, pp. 1–14 (2016)

    Google Scholar 

  7. Chaturvedi, R.K., Chand, S.: MPTCP over datacenter networks. In: Proc. Int. Conf. Inven. Commun. Comput. Technol. ICICCT 2018, Icicct, pp. 894–898, 2018. https://doi.org/10.1109/ICICCT.2018.8473290

  8. Hijawi, H.M.A., Hamarsheh, M.M.N.: Performance analysis of multi-path TCP network. Int. J. Comput. Netw. Commun. 8(2), 145–157 (2016). https://doi.org/10.5121/ijcnc.2016.8213

    Article  Google Scholar 

  9. Kawasaki, H., Ibuka, K., Kojima, F., Matsumura, T.: Field trials of link aggregation system based on multipath TCP in heterogeneous mobile network. In: Int. Symp. Wirel. Pers. Multimed. Commun. WPMC, vol. 2021, Dec 2021. https://doi.org/10.1109/WPMC52694.2021.9700462

  10. Silva, C.F., Ferlin, S., Alay, O., Brunstrom, A., Kimura, B.Y.L.: IoT traffic offloading with multipath TCP. IEEE Commun. Mag. 59(4), 51–57 (2021). https://doi.org/10.1109/MCOM.001.2000915

    Article  Google Scholar 

  11. Park, C.H., Austria, P., Kim, Y., Jo, J.Y.: MPTCP performance simulation in multiple LEO satellite environment. In: 2022 IEEE 12th Annu. Comput. Commun. Work. Conf., CCWC 2022, pp. 895–899, 2022. https://doi.org/10.1109/CCWC54503.2022.9720772.

  12. Kaur, H., Singh, G.: TCP congestion control and its variants. Adv. Comput. Sci. Technol. 10(6), 1715–1723 (2017)

    Google Scholar 

  13. Li, W., Zhang, H., Gao, S., Xue, C., Wang, X., Lu, S.: SmartCC: a reinforcement learning approach for multipath TCP congestion control in heterogeneous networks. IEEE J. Sel. Areas Commun. 37(11), 2621–2633 (2019). https://doi.org/10.1109/JSAC.2019.2933761

    Article  Google Scholar 

  14. Becke, M., Dreibholz, T., Adhari, H., Rathgeb, E.P.: On the fairness of transport protocols in a multi-path environment. In: IEEE Int. Conf. Commun., pp. 2666–2672, 2012. https://doi.org/10.1109/ICC.2012.6363695

  15. Nguyen, S.C., Nguyen, T.M.T.: Evaluation of multipath TCP load sharing with coupled congestion control option in heterogeneous networks. Glob. Inf. Infrastruct. Symp. GIIS 6, 2011 (2011). https://doi.org/10.1109/GIIS.2011.6026698

    Article  Google Scholar 

  16. RFC 6356 – Coupled congestion control for multipath transport protocols [Online]. Available: https://datatracker.ietf.org/doc/rfc6356/. Accessed 29 May 2022

  17. Prakash, M., Abdrabou, A., Zhuang, W.: An Experimental study on multipath TCP congestion control with heterogeneous radio access technologies. IEEE Access 7, 25563–25574 (2019). https://doi.org/10.1109/ACCESS.2019.2900290

    Article  Google Scholar 

  18. draft-walid-mptcp-congestion-control-04: Balanced linked adaptation congestion control algorithm for MPTCP [Online]. Available: https://datatracker.ietf.org/doc/draft-walid-mptcp-congestion-control/. Accessed 30 May 2022

  19. Peng, Q., Walid, A., Hwang, J., Low, S.H.: Multipath TCP: analysis, design, and implementation. IEEE/ACM Trans. Netw. 24(1), 596–609 (2016). https://doi.org/10.1109/TNET.2014.2379698

    Article  Google Scholar 

  20. Cao, Y., Xu, M., Fu, X.: Delay-based congestion control for multipath TCP. In: Proc. – Int. Conf. Netw. Protoc. ICNP, no. Jan 2015, 2012. https://doi.org/10.1109/ICNP.2012.6459978

  21. Hurtig, P., Grinnemo, K.J., Brunstrom, A., Ferlin, S., Alay, Ö., Kuhn, N.: Low-latency scheduling in MPTCP. IEEE/ACM Trans. Netw. 27(1), 302–315 (2019). https://doi.org/10.1109/TNET.2018.2884791

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jenny Elizabeth Arizaga-Gamboa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Arizaga-Gamboa, J.E., Alvarado-Unamuno, E.A. (2022). Performance Analysis of Multipath TCP Congestion Control Variants. In: Valencia-García, R., Bucaram-Leverone, M., Del Cioppo-Morstadt, J., Vera-Lucio, N., Jácome-Murillo, E. (eds) Technologies and Innovation. CITI 2022. Communications in Computer and Information Science, vol 1658. Springer, Cham. https://doi.org/10.1007/978-3-031-19961-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19961-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19960-8

  • Online ISBN: 978-3-031-19961-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics