Skip to main content

IoT Monitoring for Real-Time Control of Industrial Processes

  • Conference paper
  • First Online:
Technologies and Innovation (CITI 2022)

Abstract

Today’s industries require monitoring and control of all manufacturing processes. Computer integrated manufacturing (CIM) systems provide a framework for integrating production systems. In this regard, the Internet of things (IoT) has rapidly evolved to digitize and interconnect devices in industrial processes. However, to achieve the integration of a complete system implies high costs in software and hardware, which limits its penetration in medium and low size industries. For this reason, this project proposes the creation of a low-cost IoT platform whose objective is to monitor and analyze both physical and electrical parameters of an industrial process in real-time. To achieve this objective, the software and hardware specifications were defined and characterized, the conceptual design and detail of the prototype were made, and finally, the materialization was carried out. The platform was structured in two parts, a web video supervision module with a continuous monitoring camera ESP32-CAM and an interface that integrates the sensors that measure the physical and electrical variables of the environment. The experimental results show the effectiveness of the proposed system in a practical machining application on a CNC machine. With the data coming from the sensors, a database was generated to analyze and create temperature versus cutting speed control models to monitor the manufacturing process. Tests were performed on several materials, and the mathematical model of the system behavior was determined for each material in order to monitor and visualize the performance in the machining process. Finally, the cost of the project complies with the specifications proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rudra, B., Verma, A., Verma, S., Shrestha, B.: Futuristic Research Trends and Applications of Internet of Things. CRC Press, Boca Raton (2022)

    Book  Google Scholar 

  2. Madakam, S., Lake, V., Lake, V., Lake, V.: Internet of Things (IoT): a literature review. J. Comput. Commun. 3, 164 (2015). https://doi.org/10.4236/jcc.2015.35021

    Article  Google Scholar 

  3. Xu, L.D., He, W., Li, S.: Internet of Things in industries: a survey. IEEE Trans. Ind. Inf. 10, 2233–2243 (2014). https://doi.org/10.1109/TII.2014.2300753

    Article  Google Scholar 

  4. Varela-Aldás, J., Pilla, J., Andaluz, V.H., Palacios-Navarro, G.: Commercial entry control using robotic mechanism and mobile application for COVID-19 pandemic. In: Gervasi, O., et al. (eds.) Computational Science and Its Applications, vol. 12957, pp. 3–14. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87013-3_1

    Chapter  Google Scholar 

  5. Cronin, C., Conway, A., Walsh, J.: Flexible manufacturing systems using IIoT in the automotive sector. Procedia Manuf. 38, 1652–1659 (2019). https://doi.org/10.1016/j.promfg.2020.01.119

    Article  Google Scholar 

  6. Jaidka, H., Sharma, N., Singh, R.: Evolution of IoT to IIoT: applications and challenges (2020). https://papers.ssrn.com/abstract=3603739, https://doi.org/10.2139/ssrn.3603739

  7. Haghnegahdar, L., Joshi, S.S., Dahotre, N.B.: From IoT-based cloud manufacturing approach to intelligent additive manufacturing: industrial Internet of Things—an overview. Int. J. Adv. Manuf. Technol. 119, 1461–1478 (2021). https://doi.org/10.1007/s00170-021-08436-x

    Article  Google Scholar 

  8. Benardos, P.G., Vosniakos, G.C.: Internet of Things and industrial applications for precision machining. Solid State Phenom. 261, 440–447 (2017). https://doi.org/10.4028/www.scientific.net/SSP.261.440

    Article  Google Scholar 

  9. Rahmani, A.M., Bayramov, S., Kiani Kalejahi, B.: Internet of Things applications: opportunities and threats. Wireless Pers. Commun. 122(1), 451–476 (2021). https://doi.org/10.1007/s11277-021-08907-0

    Article  Google Scholar 

  10. Salih, K.O.M., Rashid, T.A., Radovanovic, D., Bacanin, N.: A comprehensive survey on the Internet of Things with the industrial marketplace. Sensors 22, 730 (2022). https://doi.org/10.3390/s22030730

    Article  Google Scholar 

  11. Xing, K., Liu, X., Liu, Z., Mayer, J.R.R., Achiche, S.: Low-cost precision monitoring system of machine tools for SMEs. Procedia CIRP 96, 347–352 (2021). https://doi.org/10.1016/j.procir.2021.01.098

    Article  Google Scholar 

  12. Kalsoom, T., et al.: Impact of IoT on manufacturing industry 4.0: a new triangular systematic review. Sustainability 13, 12506 (2021). https://doi.org/10.3390/su132212506

  13. Mao, W., Zhao, Z., Chang, Z., Min, G., Gao, W.: Energy-efficient industrial Internet of Things: overview and open issues. IEEE Trans. Ind. Inf. 17, 7225–7237 (2021). https://doi.org/10.1109/TII.2021.3067026

    Article  Google Scholar 

  14. Royandi, M.A., Hung, J.-P.: Design of an affordable IoT-based monitoring system for versatile application in machine tool. In: 2021 17th International Conference on Quality in Research (QIR): International Symposium on Electrical and Computer Engineering, pp. 76–80 (2021). https://doi.org/10.1109/QIR54354.2021.9716199

  15. Siddhartha, B., Chavan, A.P., HD, G.K., Subramanya, K.N.: IoT enabled real-time availability and condition monitoring of CNC machines. In: 2020 IEEE International Conference on Internet of Things and Intelligence System (IoTaIS), pp. 78–84 (2021). https://doi.org/10.1109/IoTaIS50849.2021.9359698

  16. Kovalev, I., Nezhmetdinov, R., Kvashnin, D.: Development of a mobile application for training operators to work with machine tools with CNC systems using augmented reality. In: 2021 International Russian Automation Conference (RusAutoCon), pp. 863–867 (2021). https://doi.org/10.1109/RusAutoCon52004.2021.9537320

  17. Blynk group: Blynk IoT platform: for businesses and developers. https://blynk.io/. Accessed 10 Aug 2022

  18. ESP32-CAM Video Streaming and Face Recognition with Arduino IDE|Random Nerd Tutorials. https://randomnerdtutorials.com/esp32-cam-video-streaming-face-recognition-arduino-ide/. Accessed 10 Aug 2022

  19. Arduino ESP8266: ESP8266 Arduino Core’s documentation. https://arduino-esp8266.readthedocs.io/en/latest/. Accessed 10 Aug 2022

  20. DHT11-Datasheet: Digital-output relative humidity & temperature sensor/module – DHT (2022). https://image.dfrobot.com/image/data/KIT0003/DHT11%20datasheet.pdf

  21. Hanwei Electronics group: MQ-2 Gas Sensor (2022). https://www.mouser.com/datasheet/2/321/605-00008-MQ-2-Datasheet-370464.pdf

  22. Zhu, K.: Modeling of the machining process. In: Zhu, K. (ed.) Smart Machining Systems: Modelling, Monitoring and Informatics, pp. 19–70. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-87878-8_2

  23. Saez, M., Maturana, F.P., Barton, K., Tilbury, D.M.: Real-time manufacturing machine and system performance monitoring using Internet of Things. IEEE Trans. Autom. Sci. Eng. 15, 1735–1748 (2018). https://doi.org/10.1109/TASE.2017.2784826

    Article  Google Scholar 

  24. Raju, H.S., Shenoy, S.: Real-time remote monitoring and operation of industrial devices using IoT and cloud. In: 2016 2nd International Conference on Contemporary Computing and Informatics (IC3I), pp. 324–329 (2016). https://doi.org/10.1109/IC3I.2016.7917983

  25. Gan, S., Li, K., Wang, Y., Cameron, C.: IoT based energy consumption monitoring platform for industrial processes. In: 2018 UKACC 12th International Conference on Control (CONTROL). pp. 236–240 (2018). https://doi.org/10.1109/CONTROL.2018.8516828

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Ayala-Chauvin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ayala-Chauvin, M., Escudero, P., Lara-Alvarez, P., Domènech-Mestres, C. (2022). IoT Monitoring for Real-Time Control of Industrial Processes. In: Valencia-García, R., Bucaram-Leverone, M., Del Cioppo-Morstadt, J., Vera-Lucio, N., Jácome-Murillo, E. (eds) Technologies and Innovation. CITI 2022. Communications in Computer and Information Science, vol 1658. Springer, Cham. https://doi.org/10.1007/978-3-031-19961-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19961-5_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19960-8

  • Online ISBN: 978-3-031-19961-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics