Skip to main content

FPGA-Accelerated Tersoff Multi-body Potential for Molecular Dynamics Simulations

  • Conference paper
  • First Online:
Applied Reconfigurable Computing. Architectures, Tools, and Applications (ARC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13569))

Included in the following conference series:

Abstract

Molecular Dynamics simulation (MD) models the interactions of thousands to millions of particles through the iterative application of fundamental physics, and MD is one of the core methods in High-Performance Computing (HPC). However, the inherent weak scalability problem of force interactions renders MD simulation quite computationally intensive and challenging to scale. To this end, specialized FPGA-based accelerators have been proposed to solve this problem. In this work, we focus on many-body potentials on a single FPGA. Firstly, we proposed an efficient data transfer strategy to eliminate the latency between on-chip and off-chip memory. Then, the fixed-point description of data type is developed for computation to increase the utilization of on-chip resources. At last, a custom pipelined strategy is presented for Tersoff to get a better simulation performance. Compared with a floating-point implementation based on NVIDIA 28080ti GPUs, our design based on Xilinx U200 FPGA is 1.2 times better.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Daggett, V.: Protein folding- simulation. Chem. Rev. 106(5), 1898–1916 (2006)

    Article  Google Scholar 

  2. Koyanagi, J., et al.: Evaluation of the mechanical properties of carbon fiber/polymer resin interfaces by molecular simulation. Adv. Compos. Mater. 28(6), 639–652 (2019)

    Article  Google Scholar 

  3. Jensen, F.: Introduction to computational chemistry. Wiley (2017)

    Google Scholar 

  4. Zhou, X.: Impact of molecular dynamics simulations on research and development of semiconductor materials. MRS Adv. 4(61–62), 3381–3398 (2019)

    Article  Google Scholar 

  5. Shaw, D.E., et al.: Anton, a special-purpose machine for molecular dynamics simulation. Commun. ACM 51(7), 91–97 (2008)

    Article  Google Scholar 

  6. Shaw, D.E., et al.: Anton 2: raising the bar for performance and programmability in a special-purpose molecular dynamics supercomputer. In: SC 2014: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. IEEE, pp. 41–53 (2014)

    Google Scholar 

  7. Shaw, D.E., et al.: Anton 3: twenty microseconds of molecular dynamics simulation before lunch. In: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, pp. 1–11 (2021)

    Google Scholar 

  8. Ohmura, I., et al.: MDGRAPE-4: a special-purpose computer system for molecular dynamics simulations. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 372(2021), 20130387 (2021)

    Google Scholar 

  9. Morimoto, G., et al.: Hardware acceleration of tensor-structured multilevel ewald summation method on MDGRAPE-4A, a special-purpose computer system for molecular dynamics simulations. In: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, pp. 1–15 (2021)

    Google Scholar 

  10. Zhang, T., et al.: SW_GROMACS: accelerate GROMACS on sunway TaihuLight. In: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, pp. 1–14 (2019)

    Google Scholar 

  11. Gao, P., et al.: Millimeter-scale and billion-atom reactive force field simulation on Sunway Taihulight. IEEE Trans. Parallel Distrib. Syst. 31(12), 2954–2967 (2020)

    Article  Google Scholar 

  12. Yang, C., et al.: Molecular dynamics range-limited force evaluation optimized for FPGAs. In: 2019 IEEE 30th International Conference on Application-specific Systems, Architectures and Processors (ASAP), vol. 2160, pp. 263–271. IEEE (2019)

    Google Scholar 

  13. Yang, C., et al.: Fully integrated FPGA molecular dynamics simulations. In: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, pp. 1–31 (2019)

    Google Scholar 

  14. Chen, Y.: OpenCL for HPC with FPGAs: case study in molecular electrostatics. In: IEEE High Performance Extreme Computing Conference (HPEC). IEEE, vol. 2017, pp. 1–8 (2017)

    Google Scholar 

  15. Cong, J., et al.: Revisiting FPGA acceleration of molecular dynamics simulation with dynamic data flow behavior in high-level synthesis. In: arXiv preprint arXiv:1611.04474 (2016)

  16. Hess, B., et al.: GROMACS 4: algorithms for highly efficient, loadbalanced, and scalable molecular simulation. J Chem. Theory Comput. 4(3), 435–447 (2008)

    Article  Google Scholar 

  17. Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117(1), 1–19 (1995)

    Article  MATH  Google Scholar 

  18. Salomon-Ferrer, R., Case, D.A., Walker, R.C.: An overview of the Amber biomolecular simulation package. Wiley Interdisc. Rev. Comput. Mol. Sci. 3(2), 198–210 (2013)

    Article  Google Scholar 

  19. Phillips, J.C., et al.: Scalable molecular dynamics with NAMD. J. Comput. Chem. 26(16), 1781–1802 (2005)

    Article  Google Scholar 

  20. Brooks, B.R., et al.: CHARMM: the biomolecular simulation program. J. Comput. Chem. 30(10), 1545–1614 (2009)

    Article  Google Scholar 

  21. Duan, X., et al.: Redesigning LAMMPS for peta-scale and hundredbillion- atom simulation on Sunway TaihuLight. In: SC18: International Conference for High Performance Computing, Networking, Storage and Analysis, pp. 148–159. IEEE (2018)

    Google Scholar 

  22. Jia, W., et al.: Pushing the limit of molecular dynamics with ab initio accuracy to 100 million atoms with machine learning. In: arXiv preprint arXiv:2005.00223 (2020)

  23. Maliţa, M., Mihǎiţǎ, M., M ştefan, G.: Molecular dynamics on fpga based accelerated processing units. In: MATEC Web of Conferences, vol. 125, p. 04012. EDP Sciences (2017)

    Google Scholar 

  24. Escobar, F.A., Chang, X., Valderrama, C.: Suitability analysis of FPGAs for heterogeneous platforms in HPC. IEEE Trans. Parallel Distrib. Syst. 27(2), 600–612 (2015)

    Article  Google Scholar 

  25. Khan, M.A., Chiu, M., Herbordt, M.C.: FPGA-Accelerated Molecular Dynamics. In: Vanderbauwhede, W., Benkrid, K. (eds.) High-Performance Computing Using FPGAs, pp. 105–135. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-1791-0_4

    Chapter  Google Scholar 

  26. Benjamin, H.: 3D FFTs on a Single FPGA. In: IEEE 22nd Annual International Symposium on Field-Programmable Custom Computing Machines. IEEE, vol. 2014, pp. 68–71 (2014)

    Google Scholar 

  27. Sheng, J., et al.: Design of 3D FFTs with FPGA clusters. In: 2014 IEEE High Performance Extreme Computing Conference (HPEC). IEEE, pp. 1–6 (2014)

    Google Scholar 

  28. Kasap, S., Benkrid, K.: Parallel processor design and implementation for molecular dynamics simulations on a FPGA-based supercomputer. JCP 7(6), 1312–1328 (2012)

    Google Scholar 

  29. Chapoutot, A., Didier, L.S., Villers, F.: Range estimation of floating-point variables in simulink models. In: Proceedings of the 2012 Conference on Design and Architectures for Signal and Image Processing. IEEE, pp. 1–8 (2012)

    Google Scholar 

  30. Piana, S., Klepeis, J.L., Shaw, D.E.: Assessing the accuracy of physical models used in protein-folding simulations: quantitative evidence from long molecular dynamics simulations. Curr. Opin. Struct. Biol. 24, 98–105 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China (No. 62102114, U21B2031), and the Key Research Project of Zhejiang Lab (No. 2021PB0AC01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Gan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yuan, M. et al. (2022). FPGA-Accelerated Tersoff Multi-body Potential for Molecular Dynamics Simulations. In: Gan, L., Wang, Y., Xue, W., Chau, T. (eds) Applied Reconfigurable Computing. Architectures, Tools, and Applications. ARC 2022. Lecture Notes in Computer Science, vol 13569. Springer, Cham. https://doi.org/10.1007/978-3-031-19983-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19983-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19982-0

  • Online ISBN: 978-3-031-19983-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics