
Title Multi-spectral in-vivo FPGA-based surgical imaging

Authors Alsharari, Majed;Niemitz, Lorenzo;Sorensen, Simon;Woods,
Roger;Burke, Ray;Andersson Engels, Stefan;Reaño, Carlos;Mai,
Son T.

Publication date 2022-10-27

Original Citation Alsharari, M., Niemitz, L., Sorensen, S., Woods, R., Burke, R.,
Andersson Engels, S., Reaño, C. and Mai, S. T. (2022) 'Multi-
spectral in-vivo FPGA-based surgical imaging', in Gan, L., Wang,
Y., Xue, W. and Chau, T. (eds) Applied Reconfigurable Computing.
Architectures, Tools, and Applications. ARC 2022. Lecture Notes
in Computer Science, vol. 13569, pp. 103-117. Springer, Cham.
https://doi.org/10.1007/978-3-031-19983-7_8

Type of publication Article (peer-reviewed)

Link to publisher's
version

10.1007/978-3-031-19983-7_8

Rights © 2022, the Authors, under exclusive licence to Springer
Nature Switzerland AG. This is a post-peer-review, pre-
copyedit version of a paper published in Gan, L., Wang, Y.,
Xue, W. and Chau, T. (eds) Applied Reconfigurable Computing.
Architectures, Tools, and Applications. ARC 2022. Lecture Notes
in Computer Science, vol. 13569, pp. 103-117. Springer, Cham.
The final authenticated version is available online at: https://
doi.org/10.1007/978-3-031-19983-7_8

Download date 2024-05-01 17:30:53

Item downloaded
from

https://hdl.handle.net/10468/13962

https://hdl.handle.net/10468/13962

Multi-Spectral In-vivo FPGA-based Surgical
Imaging⋆

Majed Alsharari1,5[0000−0003−4755−4572], Lorenzo Niemitz2, Simon Sorensen2,
Roger Woods1[0000−0001−6201−4270], Ray Burke2, Stefan Andersson Engels2,3,

Carlos Reaño4, and Son T. Mai1

1 Queen’s University Belfast, Northern Ireland BT9 5AF, UK
(malsharari01, thaison.mai, r.woods)@qub.ac.uk

https://www.qub.ac.uk/schools/eeecs/
2 Tyndall Institute, Lee Maltings Complex Dyke Parade, Cork, Ireland, T12 R5C

(lorenzo.niemitz,simon.sorensen, ray.burke)@tyndall.ie

https://www.ipic.ie/
3 Department of Physics, Kane Science Building, University College Cork, Ireland

stefan.andersson-engels@tyndall.ie

http://research.ucc.ie/profiles/D006/stefan.andersson-engels@tyndall.ie
4 Universitat de València, 46100, Spain

carlos.reano@uv.es

http://www.uv.es/caregon2
5 Jouf University, Sakaka, 72341, Saudi Arabia

malsharari@ju.edu.sa

https://www.ju.edu.sa

Abstract. Intelligent and adaptive in-vivo, catheter-based imaging sys-
tems with enhanced processing and analytical capability have the poten-
tial to enhance surgical operations and improve patient care. The paper
describes an intelligent surgical imaging system based on a ‘chip on tip’,
which reduces the need for conventional imaging. The associated embed-
ded system provides real-time, in-vivo imaging analysis and data display
for surgeons, enhancing their ability to detect clinically significant tis-
sue. The paper presents initial work on an field programmable gate array
implementation of a contrast limited adaptive histogram equalization al-
gorithm, Hessian matrix construction and region of interest function on
the AMD-Xilinx’s Kria KV260 board. It outlines optimizations under-
taken to reduce the BRAMs by 38%, DSP48 blocks by 80%, flip-flops by
33% and LUTs by 36%, thus creating a design operating at 121 FPS.

Keywords: Surgical imaging · field programmable gate array.

1 Introduction

In current surgical practice, surgeons still rely heavily on external, ’gold stan-
dard’ imaging systems such as X-ray, CT and MRI. In-vivo imaging systems

⋆ Partially supported by Jouf University.

2 M. Alsharari et al.

such as endoscopes, intravascular ultrasound are standard but can be further
enhanced and using smart and integrated micro cameras. This offers the po-
tential to enhance surgical procedures and outcomes by providing high quality,
diagnostic images from deep within the body using micro-scale image sensors on
a micro catheter platform.

As an example, the unprocessed in-vivo images in the femoral artery, distal
to proximal, of a porcine model with different illumination RGB and Near Infra-
Red (NIR) are shown in Fig 1. Fig 1(a) shows a clear field of the marker band
of a balloon catheter, a commonly used medical device for cardiac procedures,
and Fig 1(b) gives the same location illuminated using 940nm NIR. Commercial
micro-camera integrated circuits are available, but they are not specifically de-
signed for biophotonics applications such as surgical guidance, based on diffuse
reflectance imaging, fluorescence and reflectance for specific biomarkers. Com-
mercially available micro-cameras [8] are limited by resolution, image quality,
sensitivity, field of view, etc,. thus limiting their use in-vivo.

(a) RGB image showing the marker
band of a balloon catheter

(b) 940nM NIR illumination showing a
diffuse image with some ability to im-
age through the blood field.

Fig. 1. Multispectral images from inside the femoral artery of a porcine model (Cour-
tesy of Tyndall National Institute.)

Using integrated image sensors in-vivo to successfully allow, for example,
specular reflection and effective viewing of a beating heart, poses image pro-
cessing and data analytics challenges. This can be resolved by employing smart,
adaptive algorithms on an embedded system to enhance the image effectively,
but requires adoption of a suitable low power technology and careful design. The
Tyndall National Institute (TNI) in collaboration with clinicians and the medi-
cal device industry, are creating an intelligent surgical system (ISS) based on a
custom CMOS image sensor and embedded processing unit which provides both
image sensor power management and image processing capability to convert the
detected signals at the edge or interface into clinical significant medical images,

Multi-Spectral In-vivo FPGA-based Surgical Imaging 3

in real time. This paper describes the collaboration with Queen’s University to
implement the image processing functionality on an field programmable gate
array (FPGA) on the AMD-Xilinx’s Kria KV260 AI board.

The work uses multispectral image processing to recover the best possible
RGB images, including enhancement with at least two NIR wavelengths. A con-
trast limited adaptive histogram equalization (CLAHE) algorithm [5] is em-
ployed to help outline specific features such as tumours, by suppressing the
contrast of each pixel based on its neighbouring values. A Region of Interest
(ROI) algorithm highlights intra-operative ROIs to the clinician, by applying
convolution procedures using the derivatives of Gaussian kernel to construct the
Hessian matrix of each pixel with the eigenvalues used by an edginess or ROI
function. In this paper, we undertake a number of optimisations for the imple-
mentation of this functionality using the AMD-Xilinx Vitis High-Level Synthesis
(HLS) tools.

The paper is structured as follow: Section 2 briefly describes the ISS, followed
by an explanation in Section 3 of the processes and algorithms used for the
detection of blood vessels. The system architecture is then described in Section 4
and followed by the results in Section 5. Conclusions are given in Section 6.

2 Intelligent Surgical System

The proposed ISS consists of a front-end comprises a micro camera and light
source, and a small embedded processor with intelligent image processing func-
tionality, connected via a fiber optic cable to a transceiver (see Fig. 2). The front-
end module needs to have a small footprint within a microcatether (3-6 Fr.) in
order to allow surgeons to navigate to the narrow regions inside body organs. The
challenge is to undertake the design of this functionality in a lower power, FPGA
technology that provides the adaptive processing to support evolving require-
ments. The back-end comprises a high performance computing resource which,
in the future, will incorporate additional intelligence (AI) capability, gleaned by
surgeons from operations as they are performed.

Fig. 2. Visualisation of the overall system design.

Images are captured by the micro-camera, and an automated multispectral
light source helps to vary the illumination spectrum. The multispectral illu-
mination is coupled to a single fibre and as part of the system control, the

4 M. Alsharari et al.

illumination wavelengths are selected and synchronised with the detection by
the imager and the video data transfer. The resulting raw video data is trans-
mitted in a streaming-data fashion to the embedded processing unit which, in
the future, will incorporate increasingly complex image analysis intelligence to
assist the surgeon during the operation. Therefore, optimisation of the current
implementation is essential in order to support future computation requirements.

Incorporating FPGA technology to surgical systems is an interesting choice
when building innovation systems that are cost effective, have low-power con-
sumption, and seek high performance. A multi-stage, FPGA-based customised
design using similar image functionality was explored in [2] for the enhanced
detection of blood vessels in retinal images. In another example, an FPGA plat-
form was used in an endoscope imaging system [4] to provide a low-cost, high-
performance implementation. A FPGA-based controller for robotic-assisted sur-
gical system was developed in [7] to provide real-time control of a robot arms.
Similar to our future plans, they aim to build the controller as a single chip, but
clearly have different requirements.

RGB

Green channel CLAHE
Features

extraction Overlay

Directional
2nd order

derivatives

Multi-spectral
imaging

Fig. 3. Extraction of tissue features process from real imaging data captured by the
multi-spectral imaging system developed by Tyndall Institute.

3 Extraction of Tissue Features

A key need is to identify key features in generated images such as in the ex-
traction of tissue features (Fig. 3). Therefore, the proposed system employs the

Multi-Spectral In-vivo FPGA-based Surgical Imaging 5

widely-used CLAHE algorithm followed by a features extraction stage. It deter-
mines the directional second order derivatives of the enhanced image by com-
puting the eigenvalues of Hessian matrix to decide whether a pixel is of interest
or not. Overlying detected features on top of the hyperspectral images helps the
surgeons to identify the ROIs. With the aim to incorporate future additional
functionality, it is vital to minimise the FPGA resources by mapping effectively
the required functionality onto the parallel FPGA resources and employing sys-
tem level optimisations to produce the smallest footprint.

3.1 Image Acquisition

With conventional micro cameras, data is acquired with a rolling electronic shut-
ter at a frame rate of 100 frames per second (FPS). By experimentation of the
detection of blood vessels, it was determined that only the green channel needed
to be extracted, because it has unique representations of the dark background
and the bright retinal blood vessels. Each pixel stores a charge proportional to
the light intensity and is converted to a digital value between 0 to 255 within
the imager.

3.2 CLAHE

CLAHE is applied to enhance the contrast of each pixel based on its spatial
location and neighboring pixels and has been shown to map well to FPGA [3]. A
key stage of the algorithm is to divide the image into predefined and equal sized
tiles where each tile is independent and does not share pixels with its neighboring
tiles. A histogram for each tile is then obtained with 256 bins and clipped to a
threshold predefined by the user (Fig. 5). All exceeded amounts are accumulated
and redistributed uniformly to each bin which prevents noisy pixels from being
enhanced by the Adaptive Histogram Equalization (AHE) process [6].

UL UR

BL BR

w
t

s

z

Fig. 4. Bi-linear Interpolation process

6 M. Alsharari et al.

Ti
le

H
is

to
gr

am

C
lip

R
ed

is
tr

ib
u

te

Ti
le

H

is
to

gr
am

Fig. 5. Clipping, redistributing,and accumulating processes.

For each pixel value in the image, a cumulative distribution function (CDF)
is generated using the cumulative sum of the redistributed histogram of each tile
as below:

CDFt(p) =

p∑
n=0

ht(n)

z
(1)

where p pixel in tile t, ht is histogram of tile t, and z is the size of the tile.
After that, a bi-linear interpolation of each pixel p, Inew(p), is determined by
three other CDFs of pixels from adjacent tiles, as shown in (2) and demon-
strated graphically in Fig 4. This interpolation process reduces the impact of
any interfering effects that will be generated at the framed boundaries.

Inew(p) =
s

s+ w

(
t

z + t
cdfUL(p) +

z

z + t
cdfUR(p)

)
+

w

s+ w

(
t

z + t
cdfBL(p) +

z

z + t
cdfBR(p)

) (2)

3.3 Convolution with Derivatives of Gaussian Kernel

Convolution with the second-order derivative of 2D Gaussian kernel estimates
the directional gradients of the image and involves the construction of a Hessian
matrix, H, of the image. The second-order partial derivative of 2D Gaussian
kernels in x-direction,Gxx, xy-direction,Gxy, and y-direction,Gyy, are described
in equations (3), (4) and (5) respectively.

∂2G(x, y)

∂x2
=

1

2πσ4

[x2

σ2
− 1

]
e−

x2+y2

2σ2 (3)

∂2G(x, y)

∂xy
=

xy

2πσ6
e−

x2+y2

2σ2 (4)

∂2G(x, y)

∂y2
=

1

2πσ4

[y2
σ2

− 1
]
e−

x2+y2

2σ2 (5)

Multi-Spectral In-vivo FPGA-based Surgical Imaging 7

Conv

Image
Enhanced
by CLAHE

Conv

Conv

Fig. 6. Convolution with second-order derivatives of 2D Gaussian kernel

where x and y are integer values between [−K,K], K = 4σ + 1 and σ is a
scaling constant which affects the size and intensity of the Gaussian kernel. Any
order derivative of a Gaussian kernel is also separable. This can be computation
efficient since separable (N ×N) kernels can be decomposed into horizontal and
vertical kernels of size (N × 1) and (1×N) respectively.

3.4 Constructing the Hessian Matrix

H is a square matrix which holds the directional second-order derivatives of
an image, I, such as in equation (6). Each directional derivative of I can be
determined by the convolution with the directional derivatives of Gaussian kernel
(Fig. 6).

H =

[
Hxx Hxy

Hyx Hyy

]
(6)

The second-order derivative of I in the x-direction Hxx is given as equa-
tion (8) where Hxx = I ∗Gxx, Hxy = I ∗Gxy and Hyy = I ∗Gyy. The Hessian
matrix is symmetric since Hxy and Hyx are equal.

3.5 Eigenvalues of Hessian Matrix

For a given pixel point (x, y), the H(x, y) is a 2× 2 symmetric matrix which has
two real eigenvalues. Therefore, determining eigenvalues at point (x, y) can be
simplified using linear algebra as the following:

H(x, y) =

[
hxx − λ hxy

hxy hyy − λ

]
= 0 (7)

where λ =
hxx+hyy±

√
(hxx−hyy)2−4h2

xy

2 , andHxx(x, y),Hxy(x, y), andHyy(x, y)
are represented as hxx, hxy, and hyy respectively. From (7), it can be seen that

8 M. Alsharari et al.

Ei
ge

n
va

lu
es

Fe
at

u
re

ex

tr
ac

ti
o

n

Output
Pixel

Fig. 7. Eigenvalues calculation and feature extraction

the two eigenvalues might be positive or negative real values and might be equal.
Therefore, the inequality |λ2| ≥ |λ1| should always be satisfied for the purpose
of this application before proceeding for a further process.

3.6 Feature Extraction or ROI Function

For images with darker features than the background, the edginess function,
F (x, y) in (8), is used to discriminate. It uses the eigenvalues of the corresponding
Hessian matrix of a pixel (Fig. 7) to produces a value between [0,1], where values
close to zeros are associated with the background and vice-versa. This gives,

F (x, y) =

(e

−R2
B

2β2)(1− e−
S2

2c2) λ2 > 0

0 otherwise

(8)

where RB = λ2/λ1, S =
√

λ2
2 + λ2

1, β = 0.5, and c = 15 are used. We only
implemented the traditional Hessian multi-scale filtering in [2] since the improved
Hessian multi-scale enhancement filter requires calculations that involve all pixels
of the image which impact the overall throughput and memory usage.

4 FPGA-Based Image Processing System Architecture

The AMD-Xilinx’s Kria KV260 AI board and associated Vitis HLS 2021.2 tool-
set was used for initial implementation and design exploration. To optimise the
image processing implementation, the data flow (DF) optimization was employed
as it leads to solutions with lower memory usage and is applied by adding the
DATAFLOW pragma in HLS. This ensures flawless data transfer from one func-
tion to the other and will support seamless integration of future, real-time func-
tionality, as yet undefined.

Each processing step inside the system has to be linked to the next and/or
previous processing step by internal streaming interfaces which will act as FIFO
channels after C-synthesis. When using FIFOs, it is important to avoid dead-
lock, which can occur when depth is not specified correctly. A baseline system
architecture was therefore established to allow stable system functionality and

Multi-Spectral In-vivo FPGA-based Surgical Imaging 9

Pixel to stream

CDF generating
process

In
te

rp
o

la
ti

o
n

p

ro
ce

ss

Convolution

Convolution

C
o

n
st

ru
ct

 t
h

e
H

es
si

an
 m

at
ri

x

Ei
ge

n
va

lu
es

Fe
at

u
re

ex

tr
ac

ti
o

n

Fig. 8. Proposed FPGA-based image processing system architecture

then used as a reference design to evaluate the effectiveness of the applied opti-
misation techniques.

The baseline image processing system architecture (Fig. 8) comprises cascad-
ing processing elements (PEs) connected by streaming interfaces. The CLAHE
is organised into the CDF generating processes, comprising large look-up tables
(LUTs) which is connected to interpolating processes. The convolution process
is applied as one PE, but it has small internal FIFO channels which help the sep-
arable convolution and border replication loops to be in-line when specifying the
INLINE pragma in the DF optimisation flow. Finally, the Hessian matrix, de-
termination and sorting of the eigenvalues, and the feature extraction functions,
are combined into one PE, and termed the feature extraction process.

4.1 Experimental Setup

Vitis HLS 2021.2 is used for resource estimation and exporting RTL designs of
the IP core while for place and route, we used Vivado 2021.2. For on-chip power,
we used linux command ”platformstats” and ”timeit” package for timing analy-
sis. The target FPGA platform is the Kria KV260 AI board (XCK26-SFVC784-
2LV-C). For CPU/GPU evaluation, we used the Jetson Nano development kit
which has a 1.43 GHz Quad-core ARM A57 as the CPU and 128-core Maxwell
as the GPU. We chose to operate on 5W mode, and we used OpenCV/OpenCV-
Cuda 4.1.1 implementations realised using Python on Jupyter notebook. For
power analysis, we used ”jetson-stats” package while for time analysis, we used
”timeit” package. Both are imported as Python code to measure the performance
for OpenCV implementations.

5 Evaluation

This section provides details of the baseline design and changes in resource utili-
sation and throughput after system- and algorithmic-level optimisations are ap-

10 M. Alsharari et al.

plied. These are critical to ensure that sufficient FPGA real estate is available for
future improved image analysis functionality and possible AI intelligence. The
performance of the optimisations were investigated by assessing their impact in
Matlab (Section 5.3).

As the CMOS sensor will be 240X240 pixels and the system will need to
operate at 100 FPS, each frame needs to be executed in 10 ms. If every pixel is
executed for each clock cycle, this suggested a design with a 160 ns period time
will need 9.216 ms for one 240X240 frame to satisfy the design requirements.

Loops are pipelined using PIPELINE pragma with the minimum initiation
interval (II) to satisfy period time by the HLS tool. Floating-point data types
with single precision is the default for mathematical operations and variables in
the baseline design. For CLAHE, the image is divided into a 8X8 tile grid size,
giving 64 independent regions. For the convolutions, we specify σ to be 2 which
gives a (19X19) filter size, based on Section 3.3.

5.1 Baseline design

The main hardware units in the FPGA are comprised of: a dedicated processing
DSP48 (DSP) blocks including a 25-bit x 18-bit multiplier, a 48-bit adder and a
48-bit accumulator; a block RAM (BRAM) unit with 36 Kbits of data, configured
as either two independent 18 Kb RAMs, or one 36 Kb RAM; a single bit flip-flip
(FF) unit with pre-set/pre-clear functionality and; a 5-bit Lookup Table (LUT)
which can be configured as logic, memory, or a shift register.

The baseline design of Fig. 8 was coded into three main functions, namely
the CLAHE, convolution and the feature extraction processes. FIFOs were im-
plemented as different dataflow objects. The resource breakdown resulted from
the synthesis is given in Table. 1.

Table 1. Utilization estimates of baseline design on the Kria KV260 SOM involving a
Zynq UltraScale+ (% of the resource is listed)

Process BRAM DSP FF LUT

FIFO 12 (4.2%) 0 (0.0%) 2836 (1.2%) 2695 (2.3%)

CLAHE 26 (9.0%) 76 (6.1%) 6179 (2.6%) 26689 (22.8%)

Convolutions 57 (19.8%) 565 (45.3%) 10209 (4.4%) 40141 (34.3%)

Feature ext, 0 (0.0%) 58 (4.6%) 1043 (0.4%) 5811 (5.0%)

Total 95 (32.0%) 699 (56.0%) 20267 (8.7%) 75336 (64.3%)

The convolution process has the highest resource allocation as a lot of pro-
cessing is required. It uses the majority of DSP blocks and in addition, a large
amount of BRAMs in order to implement the buffers used for the FIFOs and
the efficient separable convolution processes. FIFOs consume almost 4.2% of
BRAMs since a large depth is specified to avoid deadlock issues which can cause
FIFOs with a small depth size between these loops and functions to be filled and
thus blocking writing or reading to the FIFOs.

Multi-Spectral In-vivo FPGA-based Surgical Imaging 11

5.2 Convolution optimisations

In this section, optimisations were identified at the system level and algorithmic
level with the aim of reducing the FPGA resources. At algorithmic level, we
focused around exploiting common coefficients to employ common factor opti-
misation (CFO) to reduce the computational complexity [1, 9] and also change
the order of the computation (re-ordering).

Hardware sharing: With flip-flops readily available in both the programmable
logic and DSP48 blocks, pipelining can be used to increase the speed beyond that
required and folding then applied to reduce the resources usage. This optimi-
sation is available within the Vitis tools and was employed in the convolution
function by applying feature II of pipelined loops. The unroll function produces
multiple copies of the same function which are then folded onto one PE, leading
to a reduction in the reources. This reduces the number of DSPs to 15%, FFs
to 6%, and LUTs to 38% of the baseline design. However it also results in a
reduction in the clock rate well below the desired value, in this case 27 MHz.

Common factor optimisation: The Hessian matrix requires the computation
of three second-order directional derivatives of enhanced image (Fig. 9) requir-
ing 3N multiplications and 3(N − 1) additions and associated row buffers. The
coefficients of (N × N) Gaussian kernels are determined by equations (3), (4)
and (5) and can be decomposed into (1 × N) horizontal and (N × 1) vertical
kernels. These coefficients will be fixed for the convolution process. If we expand
the horizontal convolution expression in X direction, then for N is 19, this gives,

hxxhxn = hxxh1x1 + hxxh2x2 + hxxh3x3 + hxxh4x4 + hxxh5x5 + hxxh6x6

+ hxxh7x7 + hxxh8x8 + hxxh9x9 + hxxh10x10 + hxxh9vx11 + hxxh8x12 + hxxh7x13

+ hxxh6x14 + hxxh5x15 + hxxh4x16 + hxxh3x17 + hxxh2x18 + hxxh1x19

(9)

This will require 19 multiplications and 18 additions. However, we can exploit
the separability and symmetrical proprieties of Gaussian kernels and eliminate
zero values. For the specific xx direction, hxxh6 = hxxh7 and hxxh8 = 0. Exploit-
ing this and exploiting the symmetry in equation (9), we can reorganise this
specific computation into equation (10) as follows:

hxxhxn = hxxh1(x1 + x19) + hxxh2(x2 + x18) + hxxh3(x3 + x17)

+ hxxh4(x4 + x16) + hxxh5(x5 + x15) + hxxh6(x6 + x14 + x7 + x13)

+ hxxh9(x9 + x11) + hxxh10x10

(10)

This optimisation reduces the computation by 50% as only eight multiplica-
tions and sixteen additions are needed. When this is applied to the other hori-
zontal and vertical directional convolutions, hxy and hyy, it reduces the number
of DSPs by 50% compared to baseline process in Table 2 while still providing a
throughput of 114 FPS. The figures for this revised implementation are listed as
CFO in Table 2.

12 M. Alsharari et al.

Delay BufferFIFO

Fig. 9. Baseline separable convolution design for three different kernels combined

Re-ordering: The separable 2D convolutions can be decomposed into a hor-
izontal followed by a vertical 1D-convolution each involving N multiplications
and N−1 additions. The baseline design computes the horizontal followed by the
vertical 1D-convolution, requiring the intermediate storage of (3(N − 1)) buffers
of length equal to an image row (Fig. 9), corresponding to (N − 1) buffers for
each of the three different intermediate results produced by the horizontal con-
volutions. However, if we reverse the order of operation such that we start with
vertical convolution, this will require only (N − 1) buffers since enhanced pixels
coming from CLAHE process are shared between the different directional deriva-
tives (Fig. 10). For (19×19) kernels, the number of BRAMs are reduced from 54
to 18 which more than 60% saving in convolution process. This Reorder design
provides a 40% overall reduction in the baseline design in Table 2.

5.3 Combined Designs

In this section, we explore more about combined optimisations that would even-
tually build efficient designs that achieve high performance with minimal re-
source usage.

Combined: A more efficient design can be achieved by combining a number
of these algorithmic optimisations. We first apply the Re-order optimisation
to save in BRAMs usage and then the CFO option to reduce the complexity
of the convolution function. This provides an additional saving in DSPs usage.
The combined design (shown as Combined in Table. 2) achieved a 114 FPS
which fulfils the design requirement of 100 FPS and with a lower BRAMs and

Multi-Spectral In-vivo FPGA-based Surgical Imaging 13

Delay BufferFIFO

Fig. 10. Re-ordered separable convolution implementation for three kernels

DSPs resource usage. However, we expect a higher throughput after hardware
implementation due to high-level optimisations by the Vivado tool.

Combined+: Another obvious optimisation is to trade-off wordlength against
resolution due to the small size of the original image. It is clear that a floating-
point representation is unnecessarily large for circuit parts of the processing
chain. For this reason, we changed the data type for the Combined design from
32-bit floating-point to 18-bit fixed-point arithmetic in the convolution only. This
is organised into a 10-bit integer with the remaining 8 bits used for the fractional
part.

Sufficient performance quality or quality of results (QoR) was ensured by
assessing experimentally the visual impact and also measuring the structural
similarity index measure (SSIM) and image quality degradation by peak signal-
to-noise ratio (PSNR). Our results indicate that the 18-bit fixed-point represen-
tation scored on average 0.985 SSIM index and 40dB PSNR value compared to
32-bit floating-point results. The resource utilization labelled as Combined+ is
presented in Table. 2 with the biggest saving is in DSP units where the 5 DSPs of
the floating-point can be reduced to a single DSP for the 18-bit fixed-point rep-
resentation. There is also been a small reduction in the number of flip-flops and
LUTs needed. As expected, there has only been a minimal change in throughput,
121 FPS, due the consistent use of pipelining.

5.4 Implementation Comparison

It is worth considering the performance issues when compared to a GPU im-
plementation. For this reason, the same design was implemented on GPU and

14 M. Alsharari et al.

Table 2. Resource utilization of optimized designs on (Kria KV260 SOM)

Design
BRAM DSP FF LUT

FPS
(288) (1248) (234240) (117120)

Baseline 95 (32%) 699 (56%) 20507 (8%) 76704 (65%) 114

CFO 95 (32%) 417 (33%) 14879 (6%) 58623 (50%) 114

Re-order 59 (20%) 684 (54%) 25055 (10%) 76240 (65%) 114

Combined 59 (20%) 422 (33%) 19479 (8%) 59480 (50%) 114

Combined+ 59 (20%) 142 (11%) 13687 (5%) 49426 (42%) 121

initial results generated and compared to the best FPGA realisation. In the
GPU realisation, all optimisations were applied to ensure a high quality design.
For example, conditional statements used for sorting eigenvalues and in feature
extraction function had to be implemented solely using OpenCV-Cuda com-
mands as it does not have ready-to-use functions for this. This allowed the GPU
implementation to have a very fast execution compared to CPU.

The resulting performance figures are shown in Table 3. As expected, the
GPU outperforms the CPU. However, the optimisation implemented in mapping
the design to FPGA has resulted in higher throughput when compared to the
GPU. The solid FPGA performance is largely achieved due to small image size.
The smaller size has resulted in an effective utilisation of the on-board FPGA
resources and avoided having to undertake off-chip memory accesses which would
compromised the performance. Use of the efficient design allows a throughput
rate that is nearly 1.4× as fast as the GPU. The lower power performance of
the FPGA device comes to the fore, but the overall System-on-Module (SoM)
power consumption results in comparable GPU FPS/W figure. This would be
much better if we use the single FPGA figure.

Table 3. Throughput and power comparison

Image size

Jetson Nano Developer Kit Kria Vision AI Starter Kit
ARM A57 Maxwell Zynq UltraScale+MPSoC
(CPU) (GPU) (FPGA)

Baseline Combined+

Time (ms) 240X240 20.50 12.10 8.73 8.26

FPS 240X240 48.85 82.41 114.4 121

FPS/W 240X240 17.0 29.42 30.59 33.15

6 Conclusions

The paper presents details of an FPGA implementation of an intelligent surgi-
cal imaging system based on a ‘chip on tip’ camera system. The key challenge
is to be able to implement a low power embedded processing unit to be able

Multi-Spectral In-vivo FPGA-based Surgical Imaging 15

to enhance the image quality and in the future, provide increased intelligence.
Results were presented on the implementation of the contrast limited adaptive
histogram equalization to suppress the contrast of each pixel based on its neigh-
bouring values, convolution procedures using the derivatives of Gaussian and the
construction of the Hessian matrix of each pixel with the eigenvalues used by a
ROI function. We are able to demonstrate savings in DSP processor resources by
up to 80% without a non-discernible loss in image quality. The work to date has
been important in ensuring that available FPGA real estate is created so that the
user can incorporate future functionality. Future work is targeted at providing
much more intelligence into the embedded system which will provide detection
capability for the surgeon. This will focus around building up a knowledge of
existing operations and providing embedded training on the device.

References

1. Bailey, D.G.: Design for embedded image processing on FPGAs. John Wiley & Sons
(2011)

2. Elbalaoui, A., Fakir, M., Taifi, K., Merbouha, A.: Automatic detection of
blood vessel in retinal images. In: 2016 13th International Conference on
Computer Graphics, Imaging and Visualization (CGiV). pp. 324–332 (2016).
https://doi.org/10.1109/CGiV.2016.69

3. Honda, K., Wei, K., Arai, M., Amano, H.: Clahe implementation and eval-
uation on a low-end fpga board by high-level synthesis. IEICE Trans-
actions on Information and Systems E104D(12), 2048–2056 (2021).
https://doi.org/10.1587/transinf.2021PAP0006, publisher Copyright: Copyright ©
2021 The Institute of Electronics, Information and Communication Engineers

4. Liu, X., Li, L.: Fpga-based three-dimensional endoscope system using a single ccd
camera. In: 2015 IEEE International Conference on Information and Automation.
pp. 614–618 (2015). https://doi.org/10.1109/ICInfA.2015.7279360

5. Pizer, S., Johnston, R., Ericksen, J., Yankaskas, B., Muller, K.: Contrast-limited
adaptive histogram equalization: speed and effectiveness. In: [1990] Proceedings of
the First Conference on Visualization in Biomedical Computing. pp. 337–345 (1990).
https://doi.org/10.1109/VBC.1990.109340

6. Pizer, S.M., Amburn, E.P., Austin, J.D., Cromartie, R., Geselowitz, A., Greer, T.,
ter Haar Romeny, B., Zimmerman, J.B., Zuiderveld, K.: Adaptive histogram equal-
ization and its variations. Computer vision, graphics, and image processing 39(3),
355–368 (1987)

7. Taghizadegan, A., Piltan, F., Sulaiman, N.B.: Design high frequency surgical robot
controller: Design fpga-based controller for surgical robot manipulator simscape
modeling. International Journal of Hybrid Information Technology 9(5), 431–474
(2016)

8. Wäny, M., Voltz, S., Gaspar, F., Chen, L., Tecnopolo, A.L.M.: Ultrasmall digital
image sensor for endoscopic applications. In: Proc. Int. Image Sensor Workshop.
pp. 1–3 (2009)

9. Woods, R., McAllister, J., Lightbody, G., Yi, Y.: FPGA-based implementation of
signal processing systems. John Wiley & Sons (2008)

