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Abstract. This paper presents an optimization based framework to au-
tomate system repair against omega-regular properties. In the proposed
formalization of optimal repair, the systems are represented as Kripke
structures, the properties as w-regular languages, and the repair space
as repair machines—weighted omega-regular transducers equipped with
Biichi conditions—that rewrite strings and associate a cost sequence to
these rewritings. To translate the resulting cost-sequences to easily in-
terpretable payoffs, we consider several aggregator functions to map cost
sequences to numbers—including limit superior, supremum, discounted-
sum, and average-sum—to define quantitative cost semantics. The prob-
lem of optimal repair, then, is to determine whether traces from a given
system can be rewritten to satisfy an w-regular property when the al-
lowed cost is bounded by a given threshold. We also consider the dual
challenge of impair verification that assumes that the rewritings are re-
solved adversarially under some given cost restriction, and asks to de-
cide if all traces of the system satisfy the specification irrespective of
the rewritings. With a negative result to the impair verification prob-
lem, we study the problem of designing a minimal mask of the Kripke
structure such that the resulting traces satisfy the specifications despite
the threshold-bounded impairment. We dub this problem as the mask
synthesis problem. This paper presents automata-theoretic solutions to
repair synthesis, impair verification, and mask synthesis problem for limit
superior, supremum, discounted-sum, and average-sum cost semantics.

1 Introduction

Given a Kripke structure and an w-regular specification, the model checking
problem is to decide whether all traces of the system satisfy the specification.
Vardi and Wolper [18] initiated the automata-theoretic approach to model-
checking by reducing the w-regular model checking problem to the language
inclusion problem. If the system violates the specification, this approach returns
a simple lasso-shaped counterexample demonstrating the violation. While these
counterexamples often aid the designer in manually repairing the system, this
repair process can be exhausting and error-prone. Moreover, different repair
policies may incur different costs rendering the repair problem a non-trivial op-
timization problem. This paper investigates a range of problems in synthesizing
optimal repair policies against w-reqular specification.
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As a concrete motivation for various repair problems, we consider security is-
sues (confidentiality and availability) in manufacturing. It is well documented [7]
that acoustic side-channels leak valuable intellectual property information during
the manufacturing process. Consider a 3D printer which can print either squares
or triangles. Since the movement of the stepper motors of the printer vary based
on the design, this difference in movement leads to the printer producing differ-
ent sounds. Thus, an intruder may be able to discern the shape being printed by
observing the audio output of the system as it acts as an acoustic side-channel.
One can model such a system as a Kripke structure: a mockup of such systems
is represented in Figure where the label corresponds to the state being idle
(1), printing squares (OJ), or printing triangles (A).

Suppose that the system designer wishes to protect the information that a
given printer prints only a fixed number of objects of one shape, or the sequence
in which these shapes appear, from an eavesdropper. This specification, and a
rich class of similar specifications on the observations, can be captured using
w-regular languages (see the Biichi automaton of Figure [1b| which requires that
both shapes are printed infinitely often), and one can verify if the system satisfies
such a specification using classical model checking. It is easy to see that our
system does not satisfy this property for all traces. To repair this situation, we
may wish to add spurious motor rotations to mimic the other shape, but adding
such rotations comes with a cost (say energy or time overheads). The choices
and cost available for repair can intuitively be expressed as a repair machine
(a weighted nondeterministic transducer) given in Figure For example, the
label OJOA, 3 represents the situation where the repair machine modifies the
observation corresponding to a square shape by appending a spurious rotation
mimicking a triangle shape with an extra cost of 3 units.

A key synthesis problem, then, is to compute a minimum cost repair strategy
to add these spurious rotations such that the system after repair satisfies the
specification. The cost of an w-sequence can be aggregated using discounted-sum,
average-sum, liminf, limsup, inf, or sup. We call this problem the repair synthesis
where the goal is given an aggregator and cost threshold, design a strategy on the
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Fig.1: (a) Krikpe structure representing the 3D printer System, (b) Biichi au-
tomaton B specifying the property, and (¢) Repair machine
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nondeterministic transducer such that every trace of the system can be written
to satisfy the specification with cost bounded by the given threshold.

Ezample 1. Consider the repair machine T from Figure[Id with the average-sum
cost semantics and a threshold of 2. For every spurious motor rotation, 7" incurs
a cost of 3 units of power. Note that a strategy of replacing every A with AL,
maps LA¥ to L(AO)* which is accepted by B. The mean cost of this rewrite
is 3 and is above threshold. However, there exists a strategy that rewrites LA
to L(AAADO)Y that is accepted by B, with a mean cost equal to 1.

A related problem is that of impair verification that is connected to availabil-
ity vulnerabilities. Consider an attack model in the aforementioned 3D manufac-
turing setting where an attacker with bounded capabilities controls the rewriting
process (by introducing subtle undetectable changes in the manufacturing pro-
cess) and intends to rewrite the traces in such a way that the resulting trace
satisfy some undesirable behavior (to make the acoustic profile violate some
regulatory norms) with a cost bounded below a threshold. Such undesirable
rewritings may impair the capabilities of the system and render it unavailable
for normal use. The impair verification problem is to verify whether the system
is safe from such adversarial rewritings.

If the system is found to be vulnerable to impair and the system designer
has no control over the rewriting process, a viable mitigation approach is to
minimally restrict the behavior of the system to harden it against the adversarial
rewriting. We formalize this problem as the mask synthesis problem.

Contributions. We consider repair machines to be specified as weighted w-
transducers. We study various optimal repair problems for different aggregator
functions. As we deal with reactive systems, we consider cost semantics that ag-
gregate infinite sequence of costs to a scalar via aggregator functions discounted
sum, average sum, limit superior, and supremum. We formalize and study the
following problems related to optimal repair:

— Repair Synthesis. Given a system, an w-regular specification, a repair ma-
chine, and a cost semantics, decide whether there exists a strategy to rewrite
traces of the system to satisfy the specification within a given threshold.

— Impair Verification. Given a system, an w-regular property capturing the
undesirable behaviors, a repair machine, a cost semantics, decide whether
there exist a trace of the system that satisfy the undesirable behavior under
adversarial rewritings within a given threshold.

— Mask Synthesis. Given a system, an w-regular property (undesirable be-
haviors), a repair machine, a cost semantics, find a minimal restriction of the
system such that no remaining trace of the system satisfy the undesirable
behavior under any adversarial rewritings within the threshold.

We characterize the complexity of repair synthesis (Theorems and impair
verification problems (Theorems , and for the mask synthesis problem we
discuss which aggregators allow w-regular mask (Theorems . Due to space
constraints, the proofs can be found in the Appendix.
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Related Work. Our use of repair machines is inspired by the idea of weighted
transducers studied in [9] for finite strings. The notions of robust verification
and kernel synthesis studied there are templates for the impair policy verifica-
tion and mask synthesis problems studied here, but the present setting requires
extension of those results to the setting of w-words: this is one of the secondary
contributions of this paper. Our results imply that the results presented in [9] in
the context of robust verification and kernel synthesis carry over to the setting of
w-words for the discounted-sum and mean cost-semantics, the robust verification
problem for both of these can be decided in P (cf. Theorems 5 and [6]), while the
robust kernel for discounted-sum cost-semantics is w-regular if the language of
the Kripke structure is a cut-point language (cf. Theorem . Furthermore, the
notion of repair synthesis, to the best of our knowledge, is yet unexplored.

D’Antoni, Samanta, and Singh [§] presented QLOSE, a program repair ap-
proach with quantitative objectives. The QLOSE approach permits rewriting syn-
tactical expressions with arbitrary expressions while keeping the control struc-
ture of the program intact. In comparison, our approach permits modification
of the control structure albeit with a finite set of expressions (encoded as a
finite alphabet) considered for rewriting. Consequently, our setting remains de-
cidable as opposed to repair with QLOSE that is, in general, undecidable, and for
tractability it restricts the correctness criterion to being correct over a given set
of input-output examples. Similarly, Samanta, Olivo, and Emerson [I7] consid-
ered cost-aware program repair for Turing-complete programs through the use
of predicate abstraction. However, their cost function is dependent only on the
program location as opposed to more general w-traces as proposed in our work.

Jobstmann, Griesmayer, and Bloem [12], and von Essen and Jobstman [19],
studied program repair as a two-player game with qualitative w-regular objec-
tives. Our work, in contrast, allows quantitative notions of repair costs. Cerny
and Henzinger [2] championed for the need of partial program synthesis, which
can be thought of as a repair, though its aim is to complete the given partial pro-
gram, with respect to the specification. Although not directly related to repair,
the framework of model measuring [I1] presents a notion of distance between
models; it studies the problem that given a model M and specification find the
maximal distance such that all models within that distance from M satisfy the
specification. Bansal, Chaudhuri, and Vardi [I] study comparator automata that
read two infinite sequences of weights and relate their aggregate values to com-
pare such quantitative systems. Kupferman and Tamir [I5] consider the problem
of cheating, where they use weighted automata and a penalty function to deter-
mine if the environment is cheating. The penalty function considered is again
a map from a pair of letters to a value and so the environment is only per-
mitted letter-to-letter rewritings. In contrast, our models permits more general
letter-to-string rewritings constrained with w-regular objectives.

Chatterjee et al. [5] consider the problem of solving both quantitative and
qualitative objectives and define the notion of implication games where the ob-
jective is to solve both. While we provide direct proofs, Theorems [2| and [3| can
also be recovered from results on implication games.
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2 Preliminaries

Let X denote a finite alphabet. We write X* and X* for the set of infinite and
finite words over Y. We denote an empty string by e.

Kripke Structures. A Kripke structure is a tuple K = (S, <, So, AP, L) where
S denotes a set of states, —C S x S is the transition relation, Sy C S is the
set of initial states, AP is the set of atomic propositions, and £ : § — 24F
denotes the labeling function. An infinite sequence of states m = spsy1... € S¢
is said to be a path of the Kripke structure if (s;, s;41) €= for all i € N. Let
XY = 24P The labeling function applied to a path 7 = sgs;... € S* defines
traces L£(7) = agay ... € X of K where for each 7 > 0 we have that a; = L£(s;).
We use Tx to indicate the set of all traces of K.

Omega-Regular Specifications. A non-deterministic Biichi automaton (NBA)
over X is a tuple A = (Q, ¥, Qo, Qf,d), where @ is a finite set of states, Qo C Q
is the set of initial states, 5 C @ is the set of final states, 2 is the finite input
alphabet, and 6 C @ x X' x @ denotes the transition relation. We define the ex-
tended transition relation 6 C @xX*x @ in the standard fashion, i.e. (¢,¢€,q) € &
for ¢ € Q and ax € X X* we have (¢,ax,q') € § if there exists ¢” € Q such that
(¢,a,q") € 6 and (¢",z,q') € 5.

A run p over a word w = wow; ... € X¥ is an infinite sequence of states
qo,q1 - - - such that (¢;,w;,qi+1) € 6. A run p is accepting iff some final state
from @ occurs infinitely often in p. The language defined by the automaton
A, denoted as L(A), is the set of words w over X* such that there exists an
accepting run of w by A.

Cost Aggregation Semantics. An aggregator function @ : N¥ — Q> maps
infinite sequences of numbers to a scalar. Let 7 = 775 - - - € N¥ with each 7; € N.
We consider the following aggregators:

— DSumy &7 — limy, 00 S ATy, with discount factor 0 < A < 1,
— Mean & 7 limsup,,_,.(1/n) - S0, 7,

— Sup = 7+ sup{7; | i € N}, and

— LimSup = 7 — limsup{r; | i € N}.

Quantitative Games. A game arena G = (G, Vin, VMax) consists of a graph
G = (V,E,w) where V is a finite set of vertices, E C V x V is the set of
edges, w : E — N is the weight function. The sets Vy1ax and Vin characterize
a partition of the vertex set V' such that player Min controls the edges from
vertices in Viin, while Max controls the vertices in Viyjax.

A play of the game G is an infinite sequence of vertices 7 = (vg,v1,...)
such that (v;,v;4+1) € F for all ¢ € N. A finite play is a finite such sequence,
that is, a sequence in V*. We denote by last(w) the final vertex in the finite
play m. We write Play; and FPlayg for the set of infinite and finite plays of the
game arena G, respectively. A strategy of player Min in G is a partial function
o : FPlay — V defined over all plays = € FPlay with last(7) € Vinin, such that
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we have (last(7), o (7)) € E. A strategy x of player Max is defined analogously.
We say that a strategy o is positional if last(7) = last(n’) implies o(7) = o (7).
Strategies that are not positional are called history dependent. Let Xy, and
XMax be the sets of all strategies of player Min and player Max, respectively.
We write IT\in and ITyax for the set of positional strategies of player Min and
player Max, respectively. For a game arena G, vertex v of G and strategy pair
(0, %) € XMin X XMax, let Play””X(v) be the infinite play starting from v in which
player Min and Max play according to ¢ and Y, respectively.

The weight function w : £ — N can be naturally extended from edges to
plays as w : Playg — N¥ as m +— cgcy ... where ¢; = w(v;, viy1) for all ¢ € N.
Given an aggregator function @ € {DSumy, Mean, Sup, LimSup}, we define the
payoff of player Min to player Max for a play 7 as @(w(7)). Depending on the
choice of the aggregator function & € {DSumy, Mean, Sup, LimSup}, we refer to
the game as ®-game. In a B-game, the goal of player Min is to choose her actions
in such a way so as to minimize the payoff, while the goal of player Max is to
maximize the payoff. For every vertex v € V, define the upper value Valg, (G,v) as
the minimum payoff player Min can ensure irrespective of player Max’s strategy.
Symmetrically, the lower value Valg (G, v) of a vertex v € V is the maximum
payoff player Max can ensure irrespective of player Min’s strategy.

Valg(G,v)= inf sup @(w(Play”X(v)))

o€ X Min X € Dptax

Valg(G,v)= sup inf @(w(Play”*(v))).
X E X Max o€ Min

The inequality Valg (G, v) < Valg (G, v) holds for all two-player zero-sum games.
A game is determined when, for every vertex v € V, the lower value and upper
value are equal. In this case, we say that the value of the game Valg exists with
Valg(G,v) = Valg(G,v) = Valg(G,v) for every v € V. For strategies 0 € Xnin
and x € Y\ax of players Min and Max, we define their values Val’ and Val* as

Valg,: v—= sup @(w(Play”*(v))) and

XE XMax

Val¥: v — Ueigfm &(w(Play™ (v))).
A strategy o, of player Min is called optimal if Valg; = Valg. Likewise, a strategy
X« of player Max is optimal if Valé" = Valg. We say that a game is positionally
determined if both players have positional optimal strategies.

Theorem 1 ([20/4]). For @ € {DSumy, Mean, Sup, LimSup}, ®-games are de-
termined in positional strategies. The complexity of solving is in NP N co-NP for
DSumy -games and Mean-games, and, is in P for Sup-games and LimSup-games.

The goal of the player Min in a Biichi game [6] over a game arena G and a
set F' C V is to choose her actions in such a way that some vertex vy € F' occurs
infinitely often in the play, while the goal of the Max player is to prevent this.
We note from [4] that LimSup-games generalize Biichi games. For Theorem [1] it
follows that the winning region, i.e. the set of vertices where the player Min has
a strategy to win can be computed in P.
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3 Problem Definition

Just as weighted transducers extend finite state automata with outputs and
costs on transitions, NBAs can be extended to weighted non-deterministic Biichi
transducers by adding an output word and costs to transitions. We define a repair
machine as a weighted non-deterministic Biichi transducer equipped with a cost
aggregation. We introduce repair machines and their computational problems.

Definition 1. A repair machine (RM) T is a tuple (Q, X, Qo, Qf, I, 0, ®) where
Q is a finite set of states, Qo C Q is the set of initial states, Qy C Q) 1is the set
of final states, I' is the output alphabet, § C Q x X x Q X I'* X N is the transition
relation, and @ is the cost aggregator function.

For a given aggregator function @ € {DSumy, Mean, Sup, LimSup}, we refer to a
repair machine as DSum-RM, Mean-RM, Sup-RM, LimSup-RM.

A transition (q,a,q’,w,c) € § indicates that, the transducer on reading the
letter a € X in state ¢, transitions to state ¢/, and outputs a word w € I'*,

incurring a cost ¢ for rewriting a to w. We write ¢ a/—w>c q if (g,a,q¢ ,w,c) € 6. A
run p of T on u = ajag - -+ € X* is a sequence (qo, (ag, wo, ¢o), q1, (@1, w1,¢1),...)

ai/wi

where for every i > 0 we have that ¢o € Q¢ and ¢; ———¢, ¢i+1. Let Runs(T, u)
be the set of runs of T' on u. We write O(p) and C(p) for the projection on the
outputs and cost sequences, i.e. O(p) = wows ... and C(p) = cpc1 ..., of arun p
of T'. We say that a run of 1" is accepting if states from @)y are visited infinitely
often. We write dom(T') for the set of all words which have an accepting run.

We define three different semantics for 7. The function [T](u) returns the
set of all pairs of outputs and cost sequences over the word u € X“; the function
[T]¥ (u,v) returns the optimal rewriting cost w.r.t the aggregator function @
over T for a rewriting of u to v; and [T]® (u) returns the set of all rewritings of
a word u with cost bounded by a threshold 7 € R.

[T](uw) = {(O(p),C(p)) : u € dom(T) and p € Runs(T,u)},
[T]P (u,v) = inf {B(C(p)) : p € Runs(T,u) and O(p) = v},
[T]2(u) = {O(p) : p € Runs(T,u) and [T]2 (1, O(p)) < )}

An example of a RM and aggregation functions is shown in Appendix

Problems of Optimal Repair. Given the Kripke structure K representing the
system, the w-regular specification specified by the language L C ', aRM T, a
cost semantics @ € {DSumy, Mean, Sup, LimSup}, and a threshold 7 € Qx¢, the
repair synthesis problem asks if there exists a strategy of rewriting every trace
t € Tk to some word w € L using T such that cost is at most 7.

We restrict the repair policies where Player Min is restricted to rewrite a
letter of the trace based on history and not to rely on a lookahead. We give a
game semantics to the repair synthesis problem as a turn-based two player game
between players Min and Max that proceeds as follows. The game begins with
player Max selecting the initial state sg € Sy of the Kripke structure and ends
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her turn. Player Min, starts from the initial state ¢y of the RM and then selects a
valid rewriting w; of L£(so) such that (qo, £(s0), ¢;, wi, c) € d is a valid transition
for some ¢ € N and changes the state of the RM to ¢}, she then ends her turn.
The game continues in this fashion, where player Max selects the next state s/
of the Kripke structure and Player Min selects a valid rewriting and thus the
next state of the repair machine. This turn based game proceeds indefinitely and
results in Player Max selecting a trace t € Tx and player Min selecting a word
w € N¥. Player Min wins the game if w € [T]®(t), and w € L, otherwise player
Max wins the game. The existence of a winning strategy for Player Min implies
the existence of a repair strategy.

Definition 2 (Repair Synthesis). Given a Kripke structure K representing
the system, an w-reqular specification L, a repair machine T, a cost semantics
@ € {DSumy, Mean, Sup, LimSup}, and a threshold T decide whether there exists
a strategy to rewrite every trace t € Tx to some word w € L with a cost of at
most T, and if so synthesise this strategy.

We also consider the dual challenge of impair verification where the system
is subjected to adversarial rewritings. This setting has applications in, among
others, availability vulnerability detection. We consider an attack model where
the rewritings given by the repair machine are resolved adversarially but are
restricted to be within a given cost. The verification problem is to decide if
there exists traces of the system that satisfy an w-regular property capturing
the undesirable behaviors for some such rewritings. The game semantics for the
impair verification problem are similar to that of repair synthesis, however in
the case of impair verification the player Max not only controls the selection of
the next state s}, but also decides the rewriting by selecting the word w} as well.

Definition 3 (Impair Verification). Given a structure K representing the
system, an w-regular language L capturing the undesirable behavior given as an
NBA A, repair machine T, a cost semantics & € {DSumy, Mean, Sup, LimSup},
and a threshold T € Q>¢, the impair verification problem fails if there exists a
trace t € T that can be rewritten to some word w € L with a cost of at most T
under an adversarial strategy.

When one may not be able to pass the impair verification problem, it may
be desirable to design a way to minimally mask the Kripke structure such that
the resulting system satisfies the specifications despite the threshold-bounded
impairment. In such a case, we wish to find the maximal subset N’ of traces
which, even under adversarial rewrites, satisfy the w-regular specification L.

Definition 4 (Mask Synthesis). Given a Kripke structure K representing the
system, an w-regular language L capturing the undesirable behavior given as an
NBA A, repair machine T, a cost semantics @ € {DSumy, Mean, Sup, LimSup},
and T € Qx>o, the problem of mask synthesis is to find a mazimal subset N' C Ty
such that all traces t € N’ pass the impair verification.

The next three sections present our results on these three problems.
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4 Repair Synthesis

To solve the problem of repair synthesis, we reduce it to a related problem
of threshold synthesis. Threshold synthesis asks for a partition of the rational
numbers Q>¢ into sets G (good) and B (bad) sets such that the repair synthesis
problem can be solved for all good thresholds 7 € G. Given a system K, the
specification L C I'* represented by an NBA B, a repair machine 7', and a cost
semantics @ € {DSumy, Mean, Sup, LimSup}, we focus on the threshold synthesis
problem: find a partition of Q>¢ into two sets G and B such that the policy
synthesis can be solved for all 7 € G. We note that in the case of policy synthesis,
the sets G and B are upward and downward closed respectively. If player Min
has a winning strategy for some 7 € Q¢ then she may use the same strategy for
all 7/ > 7. Let the infimum value 7 for which player Min wins be denoted as 7*,
then G = [7*,00) and B = [0, 7*). We call this value 7* the optimal threshold.

4.1 Solving the Biichi Games

Our approach to compute the optimal threshold is to first restrict the choice of
player Min to those where she has a strategy to win with respect to the Biichi
objective, irrespective of the choices of Player Max on the Kripke structure. If
Player Min has no valid strategy to rewrite a trace of the system to satisfy the
Biichi objective, then the optimal threshold 7 = co. We thus consider the case
when 7* # co by playing a Biichi game on a game arena and then pruning it.

To construct the game arena, we first construct the synchronized product
KxTxB of K, T, and B. Intuitively, K xT x B accepts those traces of the sys-
tem, which have some rewriting that is in L.

Definition 5. The synchronized product K XxT x B of the Kripke Structure K =
(S, <, 80, L), the repair machine T = (Q, X, Qo, Qs, I, A,C) and the NBA B =
(P, T, Py, Py,0) is a weighted (directed) graph G* = (V, E,W, V1, V), where:

— V' =8%xQxPx{1,2} is the set of vertices consisting of states of the system
K, repair machine T, and NBA B, and a counter that tracks the visitation
of accepting states of T and B (like the degeneralization construction for the
generalized Biichi automata)

— FE C V xV is such that ((s,q,p,1),(s',¢,p',i")) € E if (s,8) €= is a
transition in K, for some w € I'* and ¢ € N transition (q, L(s),q,w,c) € A
isinT, and (p,w,p’) € 5 is a transition in B, and one of the following holds:

i=i=1andq ¢ Qy

i=1i=2andp¢ Ps

i=1andi =2 and ¢ € Qy

i=2andi =1andpec Py

— W : E — N is the weight function such that

W((g,s,p,1),(q'ss",p',i")) =min{c : (¢,L(s),¢',w,c) € A};

- VI CV =Qo xSy x Py x {1} is the set of initial vertices; and
— Ve CV =Q xS x Py x{2} is the set of final vertices.
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To distinguish the choice of player Max and Min, we define a game structure
G* on the product graph G* by introducing intermediate states by appending
another layer to the track counter. The formal construction is shown next.

The game graph G* = ((V,E,W, V7, Vr), Vin, VMax) for product G* =
(V,E,W,V;,VF) is such that:

- V=8xQxPx{1,2,3}
— E is such that for e = ((s,q,p,4)(s',q,p',i')) € E we have two edges to
separate the choice of the RM and the NBA from the Kripke structure:
e c1=((s,4,p,7),(5,¢,p',3)) € £ and
o 2= (5,40, 3)(5', ¢, 7)) € By_
with the weights W(e;) = W(e) and W (eg) = 0;
— Vin =9 x Q x P x {1,2}; and
— Viax =S x Q x P x {3}.

Note that the first choice is made by player Max in choosing the starting state of
the Kripke structure, and in the subsequent transitions player Min reads those
states and makes a choice over the rewrites. For this reason, the choice of player
Max appear to be lagging by one.

We play the Biichi-game on G* with the set of accepting states as Vp. We
then prune the arena to contain only those states that are in the winning region
of player Min with respect to the Biichi objective, that is, the set of states where
player Min has a strategy to enforce visiting Biichi states irrespective of the
strategy chosen by the player Max. We denote this pruned game arena as G.

4.2 Optimal Threshold for DSum-RM

We reduce the problem of finding the optimal threshold 7* for a DSum-RM to
the problem of finding the value of a DSum-game on the game arena G. As such
we reduce the choices of selecting a trace by player Max and that of selecting a
rewriting by player Min in the context of repair synthesis to choices made by the
players in a DSum-game over an arena G. In particular, we have the following.

Theorem 2. The optimal threshold 7 for the DSum-RM can be computed in
NP N co-NP via solving a DSum-game on G.

Proof (Sketch). We solve the DSum, game on G with v = VA, the value of this
game corresponds to the optimal threshold 7%, as each edge of the synchronized
product is captured by a pair of edges in G. For any € > 0, Player Min has a
strategy of following this DSum strategy, and then following the strategy of the
Biichi-game such that the cost of this rewriting is 7* + €.

4.3 Optimal Threshold for Mean-RM

Similar to the case of the DSum-RM, in the case of the Mean-RM, we reduce the
problem of finding the optimal threshold 7* to the problem of finding the value
of a Mean-game on a game arena G. However we note that unlike the case of
the DSum-RMs we also need to ensure that the mean cost cycle is co-accessible
from the accepting vertices. In particular we have the following result.
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Theorem 3. The optimal threshold ™ for the Mean-RM can be computed in
NP N co-NP via solving a Mean game on G.

Proof (Sketch). The proof of this theorem is similar to that of Theorem [2| Here,
we first find a least cost mean cycle that is co-accessible by Player Min from
the winning strategy of the Biichi-game on G (either a cycle following some
Mean-game or the Biichi cycle itself). To do so we determine vertex that is co-
accessible along the Mean-game over G as well as the Biichi-game. Player Min
then alternates between two strategies in rounds, the first, where she follows
the strategy of the Mean-game and the second to where she follows the strategy
of the Biichi-game. At any round 4, she follows the strategy of the Mean-game
until she cycles on the co-accessible vertex 2* many times and then follows the
strategy of the Biichi-game once to return to this vertex. As the least cost-cycle
has twice the number of edges of the synchronized product we divide the value
of the Mean-game by two to determine the optimal threshold. We note that
the above strategy relies on infinite memory, however Player Min can restrict
the number of rounds for any ¢ > 0, and so she has a finite memory policy to
guarantee repair for any threshold of 7* + ¢.

4.4 Optimal Thresholds for Sup-RMs and LimSup-RMs

In the case of the Sup aggregator function we first order the edges of G* in the
descending order of their weights and remove them in stages from the largest to
the smallest. If, at any stage, the removal of edge e, leads to a failure of satisfying
the Biichi condition, we infer that e is necessary to satisfy the Biichi condition
for some state in G. We claim that the weight of the edge e is 7.

Similar to the Sup aggregator function, we start removing edges of G* in the
descending order of their weights only if they are present in an accepting cycle
in the case of theLimSup aggregator function. Then, if at any stage, the removal
of edge e, leads to a failure of satisfying the Biichi condition, we infer that the
7% = W(e) and conclude that we can safely remove edges with a higher weight.

Theorem 4. Computing optimal threshold 7 for Sup and LimSup-RMs is in P.

Proof (Sketch). Note that the removal of any edge e from the synchronized
product that causes the Biichi-objective to no longer be satisfied guarantees that
all the rewrite strategies for at least one trace do not satisfy the Biichi objective.
Hence the removal prevents the satisfaction of either the acceptance of RM T
or the NBA B, and in either case, leads to a trace of the Kripke structure that
cannot be rewritten to some word that is accepted by the NBA B.

5 Impair Verification

Given the Kripke structure K representing the system, the w-regular language
L capturing undesirable behavior, represented as an NBA B, a repair machine
T, and a cost semantics @ € {DSumy, Mean, Sup, LimSup}, we reduce the impair
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verification problem to the threshold verification problem. The threshold verifi-
cation problem is to find a partition of Q> into two sets G and B, such that
none of the traces to system can be rewritten to a word that is in the language
of B for all v € G. Let 7* denote the infimum value for which a trace t € Tg
can be rewritten to some word w € I'¥ such that w € L. Then, the threshold
verification problem is solved for any 7 < 7*, as [T]®(¢t) € L for every trace
t € Tk. Thus the set G = (0,7*) and the set B = [7*,00) and problem reduces
to finding the optimal threshold 7*.

In order to find the optimal threshold 7%, we construct the synchronised
product G* = KxT'x B as detailed in Definition [5| We prune G* to keep only
those states from where player Max has a winning strategy against the Biichi
objective. The construction is similar to Biichi games, except that the opponent
has no choice. In the following, we refer to this pruned graph as G.

5.1 Optimal Threshold for DSum-RM

In the case of a DSum-RM, we show that the optimal threshold 7* is the minimum
infinite discounted cost path in G. While it may not be possible to achieve this
cost, for any € > 0 we show the existence of a finite memory strategy of player
Max that guarantees that some rewriting with threshold of 7* 4 ¢ is in L.

We claim that the optimal threshold 7* is the minimum discounted cost
in G. To find this value, we associate a variable Vs, to each vertex v € V,
characterizing minimum discounted cost among all paths starting from the state
s. The minimum discounted values can then be characterized as [16]:

Vo= min {W(v,v")+ X Vy}

(v,v")EE

This equation can be computed by solving the following LP.

max Z V, subject to: Vo < W(v,v') + AV, for all (v,v') € E.
veV

A positional discount-optimal strategy can be
computed from the solutions of these equations simply

by picking a successor vertex minimizing the right side 0 1
of the optimality equations. Observe, however, that N Q
the resulting path may not satisfy the Biichi condi- (3, i> v _1> Vo

tion. Consider the graph shown in the inset (right). In

order to satisfy the Biichi objective, a run must visit

the state vy, while to minimize the discounted cost

the strategy is to cycle in the state v; getting a discounted sum of 1. While it is
possible to achieve an e-optimal discounted cost and satisfy the Biichi objective
by looping on vy for an arbitrary number of steps before moving to the state vo,
no strategy satisfying the Biichi objective can achieve a DSum cost of 1.

Theorem 5. The optimal threshold 7 for DSum-RMs can be computed in P.
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5.2 Optimal Threshold for Mean-RM

In the case of the Mean aggregator function, we note that only those edges
that are visited infinitely often have an effect on the cost. We say that a cy-
cle is accepting if there exists some vertex v € Vp that occurs in the cy-
cle. We let C; denote the least average cost cycle that can be reached and
is reachable from some accepting cycle Cy. We use d; and dy to denote the
total cost of these cycles and n; and ng to be the number of edges in each
of them respectively. We then show that 7* is the mean value of cycle Cj.
We observe that a strategy to determine this optimal

threshold requires infinite memory. However for any

e > 0, there exists a finite memory strategy that is 0 1

e close to 7*. Consider the graph shown in the inset Q1 Q

(right) and the following strategy adopted by Player 4,7

Max. Player Max cycles between vy and vy in rounds. T

At any given round i, Player Max cycles on vy for

2 times, and then moves and cycles once in v; and

returns to vg. Observe this strategy ensures that the

Biichi objective is satisfied while also ensuring the Mean cost to be 0 but requires
infinite memory to keep track of the rounds. However, Player Max can achieve
a g-optimal mean cost by limiting the number of rounds.

Theorem 6. The threshold 7" for Mean-RMs can be computed in P.

5.3 Optimal Thresholds for Sup-RMs and LimSup-RMs

For the Sup aggregator function, let S be the set of values ¢; such that ¢; is the
supremum of the cost of some lasso that starts from some v; € V; and cycles
in a loop containing some vy € Vp. Let k be the least element in S. We claim
7* = k. Similar to the Sup aggregator function, we consider the set S to contain
the values ¢; such that ¢; is the supremum of the costs of the edges in the cycles
that visit some vy € Vi in the case of the LimSup aggregator function. We then
take the least of these to be the optimal threshold for the LimSup-RMs.

Theorem 7. The threshold T* for Sup and LimSup-RMs can be computed in P.

6 Mask Synthesis

Given a Kripke structure K representing the system, an w-regular language L
capturing the undesirable behavior given as an NBA B, repair machine T', a cost
semantics @ € {DSumy, Mean, Sup, LimSup}, and 7 € Q>¢, the problem of mask
synthesis is to find a maximal subset N’ C T such that all traces t € N’ pass
the impair verification.

It is well known that every Kripke structure admits an w-regular language N
such that a word u € N if and only if u € Tk. Let the w-regular language of K
be N. To solve the mask synthesis problem, we restrict the domain of the repair
machine T to N by constructing a repair machine 7" using product construction
and give our results on the repair machine 7".
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6.1 Mask Synthesis for DSum-RMs.

We show that the maximal subset N’ for isolated cut-point languages [3] is w-
regular. Given a threshold 7 € Q, the maximal subset N, is the set of all words
u € dom(T"), such that for every word w’ € [T]P5'™(u) we also have w ¢ L. A
threshold 7 is e-isolated for RM T, if for € > 0 and all accepting runs r of T’,

[T]125™ (r, w) € [0,v—¢] U [v4e, 00).

It is isolated if it is isolated for some €. To prove that N’ is w-regular for such
thresholds, we first note that isolated-cut point languages are w-regular in the
context of weighted automata [I0]. We follow a similar strategy to [9], and slowly
unroll our synchronous product. We note that since the repair machine is over
w strings, there must exist some n such that

DSum(wowy ...) < DSum(wyq ... w,) + By,

where B,, = V%, where V is the largest cost that is not oco. Therefore if

DSum(wg, w1, ...) < v—e+ B, we can conclude that DSum(wy, ..., w,) <v—¢.

Lemma 1. Let T’ be a DSum repair machine and 7 € Q. If T is e-isolated for
some €, then there is n* € N such that any partial run r of length at least n*
satisfies one of the following properties:

1. DSum(r)<7t—¢ and DSum(rr’)<t—¢ for every infinite continuation ' of r.
2. DSum(r)>7+5 and DSum(rr’)>7+€ for every infinite continuation r' of r.

Here, for finite r, DSum(r) is defined in the usual fashion except that the sum-
mation will be upto the length of r.

Theorem 8. Let T' be a DSum repair machine, v € Q, and L an w-regular
language given by an NBA. For all n, we can construct an NBA A, such that
L(A,) € L(Ans1) and L(A,) € N'Ndom(T"). Moreover, if T is e-isolated, there
exists n* such that L(A,-) = N’ Ndom(T").

For the construction of A,, in Theorem [§] a notion of bad and dangerous runs
are defined. Intuitively, The bad runs are all those runs which are accepting with
cost < 7, such that the output word is not in L. The dangerous runs are the
finite partial runs which can be extended to bad runs. The idea for construction
of A, is to identify all the finite partial runs r of length n which can later be
extended to bad runs. This way we can construct a sequence of Biichi automata
that better under approximate the automata for the non-robust words in the
domain. Thanks to Lemma [I] we can assure that there exists a fixed point at n*
such that A,« recognizes all the non-robust words from 7T".

6.2 Mask synthesis for Mean-RMs

The mask synthesis problem for Mean-RMs is already undecidable for finite
words [0, Theorem 17] and this result carries over to the case of w-words.
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6.3 Mask synthesis for Sup-RMs and LimSup-RMs.

For the Sup-RMs, we can construct an NBA recognizing all output words with
a cost greater than 7 via Lemma [2] and show that the maximal subset N’ is
w-regular. The results for Sup-RMs can be extended carefully to only account
the costs occurring in accepting loops and be used for the LimSup-RMs as well.

Lemma 2. Given a Sup-automaton U = (Q,qi,0,7y) over X¥, and a rational
number 7, we can find an NBA A>T = (Q>7,q;",0°7, F~>7) such that

L(A”T) ={w | U(w) > 7}.

Theorem 9. Let T be a Sup-RM, 7 € Q and L be a w-reqular language. The
language of N’ is w-reqular and we can effectively construct an NBA for it.

7 Conclusion

This paper presented a generalization of fundamental problems on weighted
transducers and robustness threshold synthesis for w-words. We proposed and
solved the problem of minimal cost repair formulated as two player games on
weighted transducers. We note that this problem is similar to multi-objectives
optimization where the goal of the players is to satisfy an w-regular property
while optimizing a quantitative payoff. We believe that the repair problem may
find applications in designing mitigation policies against side-channel vulnera-
bility where some confidential property of the system is leaking in the output
trace, and the goal is to find a minimum-cost repair to make the system opaque.
We also considered a related problem of impair verification that is related to
availability problem where an attacker intends to rewrite the observations of
the system to make it satisfy some undesirable behavior. Some potential future
directions include the study of stochastic repair of Kripke structures and the
repair of stochastic systems (Markov decision processes) with or without the
knowledge of the environment.
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A Details from Section [3]

A.1 Example Repair Machine

Consider the repair machine T shown in Figure [2| and an input v = ba(ab)®.
The accepting run for u visits states £g,¢1,(¢2,¢5)“. So we have [T](u) =
(cc(ced)?,20(14)%). If T is a DSum-RM, with the value of A = i, we have
[T]25™ (ba(ab)*, cc(ced)?) = 2+ § + 5 + 15 + & + - - - = 3. Likewise, considering
@ = Sup, we note that [T]3"P(ba(ab)®, cc(ced)®) = 4, and for C' = LimSup, we
have [T]5™5"P(ba(ab)“, cc(ced)®) = 4. Lastly, for the case of C' = Mean, we have

[T (ba(ab)®, cc(ced)®) = limsup{2,1,1, 7,8 22 13 1T 4 — 25

ale,1
l blcd,4
Lo 41 (%)
U blc,2 ale,0 ale,1, ble,l
ald, 1

Fig.2: An example of a repair machine.

B Proofs from Section [4

B.1 Proof of Theorem [2|

Proof. Consider the game arena G, and the DSum,-game on G with v = VA
Let the vertex vg € V; be the initial vertex with the maximum value when the
game is determined with a value 7,.. That is, Valpsym(vo) > Valpsum(v;) for all
vertices v; € V7, and Valpsym(vg) = 7. We claim that the value of this game is
7*. The proof of this is in two parts.

(1) Let the optimal play by the players from vy correspond to a sequence of
vertices and edges denoted as (vo, eg, vy, €y, V1, €1, V], €] ...). We have the
value of 7, = Wi(eg) + YW (eh) + v*W(e1) + ... as the discounted sum of
this path. The selection of edges of the form e} are by player Max and
have a cost 0 while the selection of edges of the form e; are by player Min
and have a noon-zero cost W(e;). As this is the optimal play, there is no
strategy by which player Min can unilaterally decide on a better strategy.
Thus, the value 7, = W(eg) + v?W(e1) + ..., with v = v/A. The selection
of edges €. by player Max corresponds to the selection of a trace t € Tx. A
valid rewriting of this trace has a DSum cost of at most 7, where the value
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T = Wi(eg) + \W(e1) + ..., as this corresponds to the optimal selection of
a rewriting of ¢. Thus the least cost rewrite of ¢t has a value of at least 7,
contradicting our assumption.

(2) For any ¢ > 0, the value (7, +¢) € G. Let W be an upper bound on
the weights in G, then for any € > 0, there exists some k € N such that
)\k% < e. We thus follow the optimal discounted strategy for k steps and
then choose the strategy of the Biichi-game to follow a path to an accepting
cycle and cycle thereafter. Thus the resulting path has a discounted cost at
most 7, + £. As this path also wins the Biichi-game on G with discounted
cost at most 7. + ¢, the corresponding output word w must also be in L.

We note that the time taken to construct graph G is polynomial in the size of
K, T and B as constructing the synchornized product, solving the Biichi game
and pruning all take polynomial time. However, from Theorem [I} we note that
solving the DSum,-game on G is in NP N co-NP. ad

B.2 Proof of Theorem [3|

Proof. We play a Biichi-game on G and find the set of Biichi cycles for each
vertex vy € Vp. We note that the Biichi-game is determined from Theorem
and so the optimal play by both players decides on this cycle. We then find the
accepting vertex v; € Vp, with the least mean value of the Biichi cycle that can
be reached from vy and denote its mean weight as M;.

We then play the mean-game on G and determine the positional strategy for
each vertex v € V. Finally, we check if a vertex in the Biichi cycle is co-accessible
according to the Mean-game strategy. Let the Biichi cycle for a vertex vy € Vg
be denoted as Cy. We find if each vertex v; in Cf is co-accessible based on the
Mean-game. If so, we denote the cost of that cycle as M5 and note that its mean
cost if it is less than M7, otherwise we use Ms to denote the cost M.

We show that value 7* is twice Mg, where Mg is the maximum value M,
for every accepting state vy € V.

If the accepting state does not satisfy the second condition, we note that
player Max has a strategy to ensure that the Mean-game strategy cannot be
taken for any vertex in the Biichi cycle of vertex vy such that it returns to
the same vertex. Then we conclude that there exists a trace ¢ which forces
the synchronized product into this accepting state, and prevents any of the
vertices from following a strategy to minimize the mean cost. If some vertex
v in the cycle is co-accessible, we instead note that player Min has a strategy
to achieve a minimum value of at least M, regardless of the choices of player
Max and similarly has a way to ensure that the Biichi cycle is taken regardless
of the choices of player Max. Thus player Min follows a strategy of alternating
between the two cycles in rounds. At any round ¢, player Min follows the Mean-
game strategy for 27 repetitions and then follows the Biichi cycle once. Such a
strategy leads to a mean cost of My while still satisfying the Biichi acceptance
condition. As the game arena G has two edges for each edge in G*, the value of
7* = 2Mpg. For the complexity, We note that the time taken to construct graph
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G is polynomial in the size of K,T and B as constructing the synchornized
product, solving the Biichi game and pruning all take polynomial time. Further,
reachability and Biichi-games are in P from [I3], and Theorem [1} while Mean-
games are in NP N co-NP. Checking if each vertex repeats in its corresponding
strategy enumerates at most all the vertices. Checking the mean costs of the
Biichi cycles and the least cost cycles is polynomial in the number of edges.
Thus the problem is in NP N co-NP. ad

B.3 Proof of Theorem [l

Proof. We first show that the value 7, is equal to the value 7*. First 7* > 7.
Let us suppose otherwise, then there must be a strategy to rewrite every trace
t € Tk to some word w € L with a cost that is less than 7,.. We note from our
procedure that the removal of the edge e leads to a failure in satisfying the Biichi
conditon, and so there must be some trace ¢t € Tx that cannot be rewritten to
some word w € L contradicting our claim. Now we show that 7* < 7,.. If 7* > 7.,
then there exists some trace ¢t € Tk, such that

7 < [T]3°P(t,w) < 7*

for all w € [T]3""(t) and w € L. As we removed the edges in descending order of
weights, and are still able to satisfy the Biichi condition, for every trace t € Tk,
there must be some word w’ such that w' € L and [T]3*P(t,w') < 7, which is
again a contradiction.

We note that the size of G* is polynomial in the sizes of K, T and B. As
such the number of edges are also polynomial the sizes of K,7T and B. We follow
the procedure from above and note that we can at most remove all the edges.
Lastly, from Theorem [I} we have the complexity of solving Biichi games to be
in P. Thus the problem is in P. The proof follows in a similar fashion for the
LimSup aggregator function. O

C Proofs from Section [B

C.1 Proof of Theorem [5l

Proof. First we show that the optimal threshold 7* is the minimum infinite
discounted cost path. Let value of the minimum discounted cost path be 7,., and
let us suppose 7* < 7., then there must exist a trace t € Tk and a word w € L,
such that [T]P5U™ (¢, w) < 7,. As the trace t has a rewriting that is in L, it must
be accepted by the synchronized product, however if ¢ is accepted by ¢g*, then
it must follow an infinite path in G*. The discounted cost of this infinite path
must be at least as large as 7. which is a contradiction.

Let W be an upper bound on the weights in the graph G*. Then for any
€ > 0, there exists some k& € N such that )\k% < e. We follow the discounted-
optimal strategy obtained from the above optimality equation for k steps and
then choose an arbitrary strategy to an accepting cycle and follow an accepting
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cycle thereafter. It follows that the resulting path is an accepting path with cost
bounded by 7*+e¢. It is easy to see this : consider a path with all the edges having
cost W. The discounted sum for this path is % If we follow the discounted
strategy for the first £ steps on the path as defined above, then any of its infinite
extensions will cost no more than 7* + )\k% < 7* +e. We note that this is an
accepting path in G*, and so for any ¢ >0, 7. +c € B .

We note that the size of the graph G* is polynomial in K, T and A. Solving
the Biichi game on this graph and the above linear program is in P. a

C.2 Proof of Theorem

Proof. First we claim that the optimal threshold 7* is the value of the average
cost of cycle C7, where C] is the least cost cycle that can be reached and is
reachable from some accepting cycle Cs. Suppose 7" is lesser than the mean
cost of C7. Then there must exist some edges that are visited infinitely often
such that their average cost is less than the average cost of C;. The graph G*
has a finite number of edges, so these edges must be a part of some cycle as
they are visited infinitely often. However this cycle must also be reachable and
reach some accepting cycle. This must imply that there exists a cycle with an
average cost that is strictly less than the average cost of C7 which contradicts
our assumption.

If C1 and C5 are the same, i.e., C] is an accepting cycle then the value of
7* is equal to the average cost of C7. Without loss of generality we can assume
that the two cycles Cy and Cy are incident at a common point (by collapsing
the path in between them). We can collapse cycles Cy and Cy into a common
point by extending the cycle Cs to constitute a larger cycle that passes through
C; and returns to Cy. Moreover, it does not affect the least mean cost of the
graph. We now prove 7* = % by giving a strategy to find an accepting path of

the graph with mean cost as %. To find the value of 7* when C7 and C5 are not
the same, we consider the strategy of cycling between C7 and Cs in rounds. At
any round i, we cycle 2¢ many times in C; and once in cycle Cy. We can write
the value of the average computed after round i as

(I+2+...420d1+i-dp (277 —1)dy +i-do

T2 A2 tione (2 — Dy ti-ono

From the properties of limits of real sequences we note that the sequence
ag, ai, - - . converges to %, and thus we have 7% = Z—l. We note that the sequence
ai,as ... is a Cauchy sequence and so for any € > 0, there exists some M such
that for all ¢,j > M, we have |a; — aj| < e. Thus for any ¢ > 0, there exists
some k such that ap = 7* + . We can thus follow a strategy where we alternate
cycling 281 times in C; and once in Cs to approximate 7* to within e.

Now notice that the graph G* is polynomial in the sizes of K,T and A. We
find the least mean cost cycle that is co-accessible from an accepting vertex as
follows. Secondly we use Karp’s algorithm [14] to find the cost of the least mean
cycle and note that this cycle can be reached and is reachable from an accepting
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vertex. The mean value of this cycle corresponds to the optimal threshold and
so this can be done in P. a

C.3 Proof of Theorem
Computing optimal threshold 7* for Sup and LimSup-RMs is in P.

Proof. We have 7" = k as follows, first 7* > k. Let us suppose otherwise, then
there must exist some path that starts from some v; € V; and cycles infinitely
often on state vy such that the supremum of that path is less than k, but this
would contradict our assumption. We know that such a k exists as it corresponds
to the supremum of some lasso that starts from some v; € V; and visits infinitely
often some vy € Vp.

Now we show the value k can be computed in P as follows. The graph G* is
polynomial in K,T and A and has a polynomial number of edges. Pruning this
graph to contain only those vertices which can reach the accepting state can also
be done in polynomial time. While we seek to find the supremum value in all
lassos, we do not need to enumerate all the lassos. We simply need to check the
supremum value in the problem of reachability to an accepting state, and then
check reachability from that accepting state to itself from all vertices v; € Vi and
store the maximum value for each. Thus the two step reachability problem can
be solved in P. The proof follows in a similar fashion for the LimSup-RMs. O

D Proofs from Section

D.1 Proof of Lemma [Il

Proof. Let r be a partial run of length n of T'. Since T is trim, there exists a
continuation 7’ of 7, and moreover we have DSum(rr’) = DSum(r)+A"DSum(r’).
We have DSum(r’) < L2 NW = % where W is the largest weight of any
transition in T7”. Let B,, = )\%. Let n* be the smallest non-negative integer
such that B~ < e/2. (it exists since b, is strictly decreasing of limit 0). Assume
that the length of r is greater than n* i.e. n > n*. As a consequence B, < Bj«.
Since v is e-isolated, we have two cases:

1. If DSum(rr’) < 7 — e then DSum(r) < 7 — ¢ since DSum(r) < DSum(rr’) by
non-negativity of the weights of T”.

2. If DSum(rr’) > 7 + & then DSum(r) > 7 4 ¢ — A"DSum(r’). Moreover,
A"DSum(r’) < B, < B« < €/2 by construction. So —A"DSum(r’) > —¢/2
which implies DSum(r) > 7 + /2.

We have shown that either of the above cases occurs since 7 is ¢ isolated.
Next we prove that, for all continuation " of r we have (i) DSum(r) < 7 —¢
implies DSum(rr’) < 7—¢ and (ii) DSum(r) > 7+4¢/2 implies DSum(rr’) > 7+¢.
In the first case, assume by contradiction that some continuation r’ of r satisfies
DSum(rr’) > v + e. As a consequence A"DSum(r’) > 2¢, which is impossible
since A"DSum(r’) < B,, < B~ < &/2. In the second case, if DSum(r) > 7 +¢/2
then any continuation ' of r satisfies DSum(rr’) > DSum(r) > 7 4 &/2. Since T
is e-isolated, we get DSum(rr’) > v +e. O
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L(A,+) = Robz(v,L) N dom(T)

L(A,) : bad runs based on the
dangerous runs of length 1

Fig. 3: Successive approximations of the maximal subset.

D.2 Proof of Theorem

Let T” be a weighted omega transducer with DSum) aggregator function, 7 € Q,
and L an w-regular language L given by an NBA. For all n, we can construct an
NBA A,, such that:

1. L(A,) € L(Anp1a)
2. L(A,) € N'Nndom(T")

Moreover, if T is e-isolated, there exists n* such that L(A,+) = N’ N dom(T).

Proof. Let B,, = )\”% as defined above where W is the maximum weight of
the edges. A run 7 on a pair (u1,us) is called bad if DSum(r) < 7 and ug € L
and r is accepting. Note that u; ¢ N’. A finite run r is called dangerous if
|r| > n and DSum(r) < 7 — B,,. A dangerous run r can possibly be extended to
a bad run rr’. For the extended bad run, we only need to check that the output
satisfies the w-regular property represented by L, since the cost cannot grow
more than 7. We exploit this idea for construction of automaton A,,. Intuitively,
A,, recognizes all those words for which there exists a dangerous prefix run of

length n at most which can be extended to a bad run (Figure [3]).

Let Runs%," be the runs of T” of length at most n, and @ its set of states. We
assume that for all (uy,us2) recognized by T”, us € L holds. This can be assured
by taking synchronized product of T” with the automaton B recognizing L. Let
us formally construct A,: Its set of states is union of states of 7" and Runs%," .
Transitions are defined as follows: for all runs r € Runs%," of length n—1 at most
ending in some state ¢, for all o € X, if there exists a transition § of 7" from
state ¢ on reading ¢ then we have the transition r < 76 in A,. From any run
r e Runs%,” of length n: (i) if r is not dangerous, we do not have any outgoing
transitions in A,, (ii) if r is dangerous, we have a transition to its end state from
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Q while reading . Furthermore, we have all the transitions § of T’ be present
in the transitions of A,,. Accepting states are the same as that of T”.

It is easy to see that L(A,) C L(Ap4+1) for all n. Let w € L(A,) with an
accepting run p = pyps2 such that p; € (Runs%,")* and ps € Q¥. By construction
of A, the last state of p1, say r,, represents the dangerous run of length n and
from its last state, say ¢, we have e transition to ps. Moreover, r,ps is a bad run
since 7, is a dangerous run and p- satisfies the regular property. Since r,, was
dangerous at step n, DSum(r,) < v — B,,, and by definition of B,,, B, > By11.
Thus,

DSum(r,q) < DSum(r,) <7 —B,, <7 — By1.

Hence r,,q is dangerous at step n+ 1, and we get an accepting run of w in A, 41.

Suppose 7 is e-isolated for some € > 0. Let n* be the smallest non-negative
integer such that B,~ < ¢/2 (same as in above proof). We wish to show L(A,~) =
N’ N dom(T"). One side direction is easy that L(A,-) C N’ Ndom(T"). For the
other side proof, let w € dom(T”) and w ¢ N’. This implies that there exists
(w,w’,c) € [T'] such that its accepting run r has DSum(r) < 7 and w’ ¢ L. We
can say that r is bad. Since 7 is e-isolated, DSum(r) <7 —e.

By Lemma [D.1] we have DSum(r[: n*]) < 7 — & where r[: n*] represents the
prefix of r of length n*. We know that B,,» < ¢/2, therefore

DSum(r[: n*]) <7 —e <17 —¢/2 <7 — Bp~.

Hence r[: n*] is a dangerous partial run, its continuation r will have a corre-
sponding accepting path in A,+ by the definition of A, . O

D.3 Proof of Lemma [2]
Proof. We construct A7 = (Q~7,¢; 7,67, F>7) as follows :

- Q>T = Q X {0a1}7

- ¢ = (4:,0);

- ((q,7),0,(p,7)) € 6°7 if (q,0,p) € 6§ and one of the following is satisfied:
L4 Z‘:(),j:oand’}/((bp)g’rv
e i=0,j=1and7(q,p) >,
e ;=1and j=1;and

— v — Q>v % 1.

It is clear that A”7 accepts a word w € X% iff U(w) > 7. O

D.4 Proof of Theorem

Proof. We note that N’ contains the set of words u such that for every word
w e I, if [T']3"P(wy,ws) < 7, we have w ¢ L. The complement of N’ can be
defined as

N’ = {u | Jw, [T']3*"(u,w) < T Aw € L}.
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We show it is w-regular. Let A be the NBA recognizing L. First, we take the
synchronizing product of 77 and A, denoted by T’ ®a, where A works on outputs
of T” and the product accepts those words whose rewriting is in L. Hence,

N = {w; | 3w, [T' ® A]]EUP(wleQ) <7}

We can project out the outputs from product transducer and get a sup automa-
ton U. Now, the problem reduces to N’ = {w; | U(w;) < 7}. Complementing
again, we get N’ = {w; | U(w;) > 7}. Now, we can apply Lemma [2] to get an
NBA for the language of robust words. a
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