Skip to main content

Optimal Repair for Omega-Regular Properties

  • Conference paper
  • First Online:
Automated Technology for Verification and Analysis (ATVA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13505))

  • 632 Accesses

Abstract

This paper presents an optimization based framework to automate system repair against omega-regular properties. In the proposed formalization of optimal repair, the systems are represented as Kripke structures, the properties as \(\omega \)-regular languages, and the repair space as repair machines—weighted omega-regular transducers equipped with Büchi conditions—that rewrite strings and associate a cost sequence to these rewritings. To translate the resulting cost-sequences to easily interpretable payoffs, we consider several aggregator functions to map cost sequences to numbers—including limit superior, supremum, discounted-sum, and average-sum—to define quantitative cost semantics. The problem of optimal repair, then, is to determine whether traces from a given system can be rewritten to satisfy an \(\omega \)-regular property when the allowed cost is bounded by a given threshold. We also consider the dual challenge of impair verification that assumes that the rewritings are resolved adversarially under some given cost restriction, and asks to decide if all traces of the system satisfy the specification irrespective of the rewritings. With a negative result to the impair verification problem, we study the problem of designing a minimal mask of the Kripke structure such that the resulting traces satisfy the specifications despite the threshold-bounded impairment. We dub this problem as the mask synthesis problem. This paper presents automata-theoretic solutions to repair synthesis, impair verification, and mask synthesis problem for limit superior, supremum, discounted-sum, and average-sum cost semantics.

This work was supported by the National Science Foundation (NSF) under Grant ECCS-2015403 and NSF CAREER award CCF-2146563.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bansal, S., Chaudhuri, S., Vardi, M.Y.: Comparator automata in quantitative verification. In: Baier, C., Dal Lago, U. (eds.) FoSSaCS 2018. LNCS, vol. 10803, pp. 420–437. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89366-2_23

    Chapter  Google Scholar 

  2. Cerný, P., Henzinger, T.A.: From boolean to quantitative synthesis. In: International Conference on Embedded Software, EMSOFT 2011, pp. 149–154 (2011)

    Google Scholar 

  3. Chatterjee, K., Doyen, L., Henzinger, T.A.: Quantitative languages. In: Kaminski, M., Martini, S. (eds.) CSL 2008. LNCS, vol. 5213, pp. 385–400. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87531-4_28

    Chapter  Google Scholar 

  4. Chatterjee, K., Doyen, L., Henzinger, T.A.: A Survey of stochastic games with limsup and liminf objectives. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5556, pp. 1–15. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02930-1_1

    Chapter  MATH  Google Scholar 

  5. Chatterjee, K., Henzinger, T.A., Otop, J., Velner, Y.: Quantitative fair simulation games. Inf. Comput. 254, 143–166 (2017)

    Article  MathSciNet  Google Scholar 

  6. Chatterjee, K., Henzinger, T.A., Piterman, N.: Algorithms for Büchi games. arXiv preprint. arXiv:0805.2620 (2008)

  7. Chhetri, S.R., Canedo, A., Faruque, M.A.A.: Confidentiality breach through acoustic side-channel in cyber-physical additive manufacturing systems. ACM Trans. Cyber-Phys. Syst. 2(1), 1–25 (2017)

    Article  Google Scholar 

  8. D’Antoni, L., Samanta, R., Singh, R.: Qlose: program repair with quantitative objectives. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780, pp. 383–401. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41540-6_21

    Chapter  Google Scholar 

  9. Dave, V., Krishna, S., Murali, V., Trivedi, A.: Optimal repair for omega-regular properties (2022). arxiv.org/abs/2207.13416

  10. Filiot, E., Mazzocchi, N., Raskin, J., Sankaranarayanan, S., Trivedi, A.: Weighted transducers for robustness verification. In: International Conference on Concurrency Theory, CONCUR 2020, pp. 17:1–17:21 (2020)

    Google Scholar 

  11. Henzinger, T.A., Doyen, L., Chatterjee, K.: Expressiveness and closure properties for quantitative languages. In: Logic in Computer Science, Symposium on, pp. 199–208 (2009)

    Google Scholar 

  12. Henzinger, T.A., Otop, J.: From model checking to model measuring. In: D’Argenio, P.R., Melgratti, H. (eds.) CONCUR 2013. LNCS, vol. 8052, pp. 273–287. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40184-8_20

    Chapter  Google Scholar 

  13. Jobstmann, B., Griesmayer, A., Bloem, R.: Program repair as a game. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 226–238. Springer, Heidelberg (2005). https://doi.org/10.1007/11513988_23

    Chapter  Google Scholar 

  14. Kupferman, O., Tamir, T.: Coping with selfish on-going behaviors. Inf. Comput. 210, 1–12 (2012)

    Article  MathSciNet  Google Scholar 

  15. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming, 1st edn. John Wiley & Sons Inc., USA (1994)

    Book  Google Scholar 

  16. Samanta, R., Olivo, O., Emerson, E.A.: Cost-aware automatic program repair. In: Müller-Olm, M., Seidl, H. (eds.) SAS 2014. LNCS, vol. 8723, pp. 268–284. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10936-7_17

    Chapter  Google Scholar 

  17. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program verification. In: Proceedings of the First Symposium on Logic in Computer Science, pp. 322–331. IEEE Computer Society (1986)

    Google Scholar 

  18. von Essen, C., Jobstmann, B.: Program repair without regret. Formal Methods Syst. Des. 47(1), 26–50 (2015). https://doi.org/10.1007/s10703-015-0223-6

    Article  MATH  Google Scholar 

  19. Zwick, U., Paterson, M.: The complexity of mean payoff games on graphs. Theoret. Comput. Sci. 158(1), 343–359 (1996)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishnu Murali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dave, V., Krishna, S.N., Murali, V., Trivedi, A. (2022). Optimal Repair for Omega-Regular Properties. In: Bouajjani, A., Holík, L., Wu, Z. (eds) Automated Technology for Verification and Analysis. ATVA 2022. Lecture Notes in Computer Science, vol 13505. Springer, Cham. https://doi.org/10.1007/978-3-031-19992-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19992-9_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19991-2

  • Online ISBN: 978-3-031-19992-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics