Skip to main content

Handling Polynomial and Transcendental Functions in SMT via Unconstrained Optimisation and Topological Degree Test

  • Conference paper
  • First Online:
Automated Technology for Verification and Analysis (ATVA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13505))

  • 692 Accesses

Abstract

We present a method for determining the satisfiability of quantifier-free first-order formulas modulo the theory of non-linear arithmetic over the reals augmented with transcendental functions. Our procedure is based on the fruitful combination of two main ingredients: unconstrained optimisation, to generate a set of candidate solutions, and a result from topology called the topological degree test to check whether a given bounded region contains at least a solution. We have implemented the procedure in a prototype tool called ugotNL, and integrated it within the MathSAT SMT solver. Our experimental evaluation over a wide range of benchmarks shows that it vastly improves the performance of the solver for satisfiable non-linear arithmetic formulas, significantly outperforming other available tools for problems with transcendental functions.

This work has been partly supported by project “AI@TN” funded by the Autonomous Province of Trento.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Note that, according to this definition, a problem could be unsat and \(\delta \)-sat at the same time.

  2. 2.

    A formal definition of robustness can be found in Sect. 2 of [15].

  3. 3.

    \(\partial B\) is the topological boundary of B, i.e. the set of points in the closure of B that are not in its interior.

  4. 4.

    Available at https://www.cs.cas.cz/~ratschan/topdeg/topdeg.html.

  5. 5.

    We remind that we are assuming to be in \(\mathcal {NRA}\) only here.

  6. 6.

    This is not true for formulas containing strict inequalities, but we replaced strict inequalities in Algorithm 2 at line 1.

  7. 7.

    Available at https://drive.google.com/file/d/1f6RmvojKw4om0L08g3hYMBl-wb6nvEpf/.

References

  1. Aberth, O.: Computation of topological degree using interval arithmetic, and applications. Math. Comput. 62(205), 171–178 (1994)

    Article  MathSciNet  Google Scholar 

  2. Barrett, C., Fontaine, P., Tinelli, C.: The Satisfiability Modulo Theories Library (SMT-LIB) (2016). www.SMT-LIB.org

  3. Barrett, C., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability Modulo Theories, chapter 26 (2009)

    Google Scholar 

  4. Benhamou, F., Granvilliers, L.: Chapter 16 - continuous and interval constraints. In: Handbook of Constraint Programming (2006)

    Google Scholar 

  5. Brauße, F., Korovin, K., Korovina, M.V., Müller, N.T.: The ksmt calculus is a \(\delta \)-complete decision procedure for non-linear constraints. In: CADE (2021)

    Google Scholar 

  6. Barrett, C., et al.: CVC5 at the SMT Competition 2021 (2021)

    Google Scholar 

  7. Cimatti, A., Griggio, A., Irfan, A., Roveri, M., Sebastiani, R.: Incremental linearization for satisfiability and verification modulo nonlinear arithmetic and transcendental functions. ACM Trans. Comput. Logic 19(3), 1–52 (2018)

    Article  MathSciNet  Google Scholar 

  8. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT solver. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 93–107. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-7_7

    Chapter  MATH  Google Scholar 

  9. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic decompostion. In: Brakhage, H. (ed.) GI-Fachtagung 1975. LNCS, vol. 33, pp. 134–183. Springer, Heidelberg (1975). https://doi.org/10.1007/3-540-07407-4_17

    Chapter  Google Scholar 

  10. Corzilius, F., Kremer, G., Junges, S., Schupp, S., Ábrahám, E.: SMT-RAT: an open source C++ toolbox for strategic and parallel SMT solving. In: Heule, M., Weaver, S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 360–368. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24318-4_26

    Chapter  MATH  Google Scholar 

  11. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78800-3_24

    Chapter  Google Scholar 

  12. de Moura, L., Jovanović, D.: A model-constructing satisfiability calculus. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737, pp. 1–12. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35873-9_1

    Chapter  Google Scholar 

  13. Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 737–744. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9_49

    Chapter  Google Scholar 

  14. Franek, P., Ratschan, S.: Effective topological degree computation based on interval arithmetic. Math. Comput. 84(293), 1265–1290 (2015)

    Article  MathSciNet  Google Scholar 

  15. Franek, P., Ratschan, S., Zgliczynski, P.: Quasi-decidability of a fragment of the first-order theory of real numbers. J. Autom. Reasoning 57(2), 157–185 (2015). https://doi.org/10.1007/s10817-015-9351-3

    Article  MathSciNet  MATH  Google Scholar 

  16. Fränzle, M., Herde, C., Teige, T., Ratschan, S., Schubert, T.: Efficient solving of large non-linear arithmetic constraint systems with complex boolean structure. JSAT (2007)

    Google Scholar 

  17. Fu, Z., Su, Z.: XSat: a fast floating-point satisfiability solver. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780, pp. 187–209. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41540-6_11

    Chapter  Google Scholar 

  18. Gao, S., Avigad, J., Clarke, E.M.: \(\delta \)-complete decision procedures for satisfiability over the reals. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 286–300. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31365-3_23

    Chapter  Google Scholar 

  19. Gao, S., Kong, S., Clarke, E.M.: dReal: an SMT solver for nonlinear theories over the reals. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 208–214. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38574-2_14

    Chapter  Google Scholar 

  20. Jovanović, D., de Moura, L.: Solving non-linear arithmetic. ACM Commun. Comput. Algebra 46(3/4), 104–105 (2013)

    Article  Google Scholar 

  21. Minh, D.D.L., Minh, D.L.P.: Understanding the hastings algorithm. Commun. Stat. Simul. Comput. 44(2), 332–349 (2015)

    Article  MathSciNet  Google Scholar 

  22. Moore, R., Kearfott, R., Cloud, M.: Introduction to Interval Analysis (2009)

    Google Scholar 

  23. Neumaier, A.: Interval Methods for Systems of Equations. Cambridge University Press (1991)

    Google Scholar 

  24. O’Regan, D., Je, C.Y., Chen, Y.: Topological Degree Theory and Applications. Taylor and Francis (2006)

    Google Scholar 

  25. Ratschan, S.: Safety verification of non-linear hybrid systems is quasi-decidable. Formal Meth. Syst. Des. 44(1), 71–90 (2013). https://doi.org/10.1007/s10703-013-0196-2

    Article  MATH  Google Scholar 

  26. Richardson, D.: Some undecidable problems involving elementary functions of a real variable. J. Symb. Log. 33(4), 514–520 (1968)

    Article  MathSciNet  Google Scholar 

  27. Xuan, T.V., Khanh, T., Ogawa, M.: rasat: an smt solver for polynomial constraints. Formal Meth. Syst. Des. 51, 12 (2017)

    Google Scholar 

  28. Wales, D.J., Doye, J.P.K.: Global optimization by basin-hopping and the lowest energy structures of lennard-jones clusters containing up to 110 atoms. J. Phys. Chem. A, (28) (1997)

    Google Scholar 

  29. Zhang, L., Madigan, C.F., Moskewicz, M.H., Malik, S.: Efficient conflict driven learning in a boolean satisfiability solver. In: ICCAD (2001)

    Google Scholar 

  30. Ábrahám, E., Davenport, J., England, M., Kremer, G.: Deciding the consistency of non-linear real arithmetic constraints with a conflict driven search using cylindrical algebraic coverings. J. Log. Algebraic Meth. Program. 119, 100633 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Lipparini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cimatti, A., Griggio, A., Lipparini, E., Sebastiani, R. (2022). Handling Polynomial and Transcendental Functions in SMT via Unconstrained Optimisation and Topological Degree Test. In: Bouajjani, A., Holík, L., Wu, Z. (eds) Automated Technology for Verification and Analysis. ATVA 2022. Lecture Notes in Computer Science, vol 13505. Springer, Cham. https://doi.org/10.1007/978-3-031-19992-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19992-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19991-2

  • Online ISBN: 978-3-031-19992-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics