Skip to main content

A Fuzzy-Based System for Estimation of Landslide Disasters Risk Considering Digital Elevation Model

  • Conference paper
  • First Online:
Advances on Broad-Band Wireless Computing, Communication and Applications (BWCCA 2022)

Abstract

Recently, the number of landslide disasters is increased because of heavy rains. For measuring the landslide disasters, it is necessary to consider the characteristics of the mountain topography in addition to rainfalls. Fuzzy inference is a good approach for estimation of disaster risk considering rainfalls and topography parameters. Detecting landslide disasters before they happen requires data collection on the wide area. However, monitoring the entire area of a mountain requires a large number of sensors. In this paper, we present Fuzzy-based system that estimates Landslide Disasters Risk (LDR) considering Digital Elevation Model (DEM). The evaluation results show that the proposed system can estimate LDR according to the rainfall and topography parameter using the real data collected on wide areas by a Wireless Sensor Network (WSN).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Saito, H., et al.: Rainfall conditions, typhoon frequency and contemporary landslide erosion in Japan. Geology 42(11), 999–1002 (2014)

    Article  Google Scholar 

  2. Froude, M.J., et al.: Global fatal landslide occurrence from 2004 to 2016. Nat. Hazard. 18(8), 2161–2181 (2018)

    Article  Google Scholar 

  3. Yoshida, M., et al.: Characteristics of disaster-related information in case of the heavy rain event of July 2018-a case study of Okayama, Hiroshima, and Ehime prefectures. J. JSCE 9(1), 39–50 (2021)

    Article  Google Scholar 

  4. Dou, J., et al.: An integrated artificial neural network model for the landslide susceptibility assessment of Osado Island, Japan. Nat. Hazards 78(3), 1749–1776 (2015). https://doi.org/10.1007/s11069-015-1799-2

    Article  Google Scholar 

  5. Ayalew, L., Yamagishi, H.: The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 65(1–2), 15–31 (2005)

    Article  Google Scholar 

  6. Ayalew, L., et al.: Landslide susceptibility mapping using GIS-based weighted linear combination, the case in Tsugawa area of Agano River, Niigata Prefecture, Japan. Landslides 1(1), 73–81 (2004)

    Article  Google Scholar 

  7. Mucchi, L., et al.: A flexible wireless sensor network based on UltraWide band technology for ground instability monitoring. Sensors 18(9), 2948 (2018)

    Article  Google Scholar 

  8. Ramesh, M.V.: Real-time wireless sensor network for landslide detection. In: 2009 Third International Conference on Sensor Technologies and Applications, pp. 405–409. IEEE (2009)

    Google Scholar 

  9. Giri, P., et al.: Wireless sensor network system for landslide monitoring and warning. IEEE Trans. Instrum. Meas. 68(4), 1210–1220 (2018)

    Article  Google Scholar 

  10. Gu, X.B., et al.: The risk assessment of landslide hazards in Shiwangmiao based on intuitionistic fuzzy SetsTopsis model. Nat. Hazards 111, 283–303 (2022)

    Article  Google Scholar 

  11. Matsui, T., et al.: FPGA implementation of a fuzzy inference based quadrotor attitude control system. In: Proceedings of IEEE GCCE-2021, pp. 691–692 (2021)

    Google Scholar 

  12. Saito, N., et al.: Approach of fuzzy theory and hill climbing based recommender for schedule of life. In: Proceedings of LifeTech-2020, pp. 368–369 (2020)

    Google Scholar 

  13. Akhoondzadeh, M., Marchetti, D.: Developing a fuzzy inference system based on multi-sensor data to predict powerful earthquake parameters. Remote Sens. 14(13), 3203 (2022)

    Article  Google Scholar 

  14. Iwendi, C., et al.: Classification of COVID-19 individuals using adaptive neuro-fuzzy inference system. Multimedia Syst. 28(4), 1223–1237 (2022)

    Article  Google Scholar 

  15. Ozera, K., et al.: A fuzzy approach for secure clustering in MANETs: effects of distance parameter on system performance. In: Proceedings of IEEE WAINA-2017, pp. 251–258 (2017)

    Google Scholar 

  16. Yukawa, C., et al.: Evaluation of a fuzzy-based robotic vision system for recognizing micro-roughness on arbitrary surfaces: a comparison study for vibration reduction of robot arm. In: Proceedings of NBiS-2022, pp. 230–237 (2022)

    Google Scholar 

  17. Yukawa, C., et al.: Design of a fuzzy inference based robot vision for CNN training image acquisition. In: Proceedings of IEEE GCCE-2021, pp. 806–807 (2021)

    Google Scholar 

  18. Inaba, T., et al.: Performance evaluation of a QoS-aware fuzzy-based CAC for LAN access. Int. J. Space Based Situated Comput. 6(4), 228–238 (2016)

    Article  Google Scholar 

  19. Mukherjee, S., et al.: Evaluation of vertical accuracy of open source Digital Elevation Model (DEM). Int. J. Appl. Earth Obs. Geoinf. 21, 205–217 (2013)

    Google Scholar 

  20. Claessens, L., et al.: DEM resolution effects on shallow landslide hazard and soil redistribution modelling. Earth Surface Process. Land. J. Br. Geomorphol. Res. Group 30(4), 461–477 (2005)

    Article  Google Scholar 

  21. Nagai, Y., et al.: A wireless sensor network testbed for monitoring a water reservoir tank: experimental results of delay. In: Proceedings of CISIS-2022, pp. 49–58 (2022)

    Google Scholar 

  22. Nagai, Y., et al.: A wireless sensor network testbed for monitoring a water reservoir tank: experimental results of delay and temperature prediction by LSTM. In: Proceedings of NBiS-2022, pp. 392–401 (2022)

    Google Scholar 

  23. Oda, T., et al.: Design and implementation of a simulation system based on deep Q-network for mobile actor node control in wireless sensor and actor networks. In: Proceedings. of IEEE AINA-2017, pp. 195–200 (2017)

    Google Scholar 

  24. Yang, T., et al.: Impact of mobile sink nodes on performance of wireless sensor networks. Int. J. Inf. Technol. Commun. Converg. 2(2), 155–170 (2012)

    Google Scholar 

  25. Hong, Y., et al.: The influence of intense rainfall on the activity of large-scale crystalline schist landslides in Shikoku Island, Japan. Landslides 2(2), 97–105 (2005)

    Article  Google Scholar 

  26. Vallet, A., et al.: Effective rainfall: a significant parameter to improve understanding of deep-seated rainfall triggering landslide-a simple computation temperature based method applied to Séchilienne unstable slope (French Alps). Hydrol. Earth Syst. Sci. Discuss. 10(7), 8945–8991 (2013)

    Google Scholar 

  27. Horn, B.K.P.: Hill shading and the reflectance map. Proc. IEEE 69(1), 14–47 (1981)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by JSPS KAKENHI Grant Number JP20K19793.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuya Oda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tabuchi, K. et al. (2023). A Fuzzy-Based System for Estimation of Landslide Disasters Risk Considering Digital Elevation Model. In: Barolli, L. (eds) Advances on Broad-Band Wireless Computing, Communication and Applications. BWCCA 2022. Lecture Notes in Networks and Systems, vol 570. Springer, Cham. https://doi.org/10.1007/978-3-031-20029-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20029-8_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20028-1

  • Online ISBN: 978-3-031-20029-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics