Skip to main content

Mutually Reinforcing Structure with Proposal Contrastive Consistency for Few-Shot Object Detection

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13680))

Abstract

Few-shot object detection is based on the base set with abundant labeled samples to detect novel categories with scarce samples. The majority of former solutions are mainly based on meta-learning or transfer-learning, neglecting the fact that images from the base set might contain unlabeled novel-class objects, which easily leads to performance degradation and poor plasticity since those novel objects are served as the background. Based on the above phenomena, we propose a Mutually Reinforcing Structure Network (MRSN) to make rational use of unlabeled novel class instances in the base set. In particular, MRSN consists of a mining model which unearths unlabeled novel-class instances and an absorbed model which learns variable knowledge. Then, we design a Proposal Contrastive Consistency (PCC) module in the absorbed model to fully exploit class characteristics and avoid bias from unearthed labels. Furthermore,we propose a simple and effective data synthesis method undirectional-CutMix (UD-CutMix) to improve the robustness of model mining novel class instances, urge the model to pay attention to discriminative parts of objects and eliminate the interference of background information. Extensive experiments illustrate that our proposed approach achieves state-of-the-art results on PASCAL VOC and MS-COCO datasets. Our code will be released at https://github.com/MMatx/MRSN.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 international Conference on Engineering and Technology (ICET), pp. 1–6. IEEE (2017)

    Google Scholar 

  2. Cai, Z., Vasconcelos, N.: Cascade R-CNN: delving into high quality object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6154–6162 (2018)

    Google Scholar 

  3. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607. PMLR (2020)

    Google Scholar 

  4. Chen, X., Fan, H., Girshick, R., He, K.: Improved baselines with momentum contrastive learning. arXiv preprint arXiv:2003.04297 (2020)

  5. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010)

    Article  Google Scholar 

  6. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: International Conference on Machine Learning, pp. 1126–1135. PMLR (2017)

    Google Scholar 

  7. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)

    Google Scholar 

  8. Gu, Q., et al.: PIT: Position-invariant transform for cross-FoV domain adaptation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8761–8770 (2021)

    Google Scholar 

  9. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9729–9738 (2020)

    Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  11. He, L., et al.: End-to-end video object detection with spatial-temporal transformers. In: Proceedings of the 29th ACM International Conference on Multimedia, pp. 1507–1516 (2021)

    Google Scholar 

  12. Hu, H., Bai, S., Li, A., Cui, J., Wang, L.: Dense relation distillation with context-aware aggregation for few-shot object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10185–10194 (2021)

    Google Scholar 

  13. Kang, B., Liu, Z., Wang, X., Yu, F., Feng, J., Darrell, T.: Few-shot object detection via feature reweighting. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8420–8429 (2019)

    Google Scholar 

  14. Karlinsky, L., et al.: RepMet: Representative-based metric learning for classification and few-shot object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5197–5206 (2019)

    Google Scholar 

  15. Li, B., Sun, Z., Guo, Y.: SuperVAE: Superpixelwise variational autoencoder for salient object detection. In: The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019, pp. 8569–8576. AAAI Press (2019). https://doi.org/10.1609/aaai.v33i01.33018569

  16. Li, B., Sun, Z., Li, Q., Wu, Y., Hu, A.: Group-wise deep object co-segmentation with co-attention recurrent neural network. In: 2019 IEEE/CVF International Conference on Computer Vision, ICCV 2019, Seoul, Korea (South), October 27 - November 2, 2019, pp. 8518–8527. IEEE (2019). https://doi.org/10.1109/ICCV.2019.00861

  17. Li, B., Sun, Z., Tang, L., Sun, Y., Shi, J.: Detecting robust co-saliency with recurrent co-attention neural network. In: Kraus, S. (ed.) Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI 2019, Macao, China, August 10–16, 2019, pp. 818–825. ijcai.org (2019). https://doi.org/10.24963/ijcai.2019/115

  18. Li, B., Sun, Z., Wang, Q., Li, Q.: Co-saliency detection based on hierarchical consistency. In: Amsaleg, L., et al. (eds.) Proceedings of the 27th ACM International Conference on Multimedia, MM 2019, Nice, France, October 21–25, 2019, pp. 1392–1400. ACM (2019). https://doi.org/10.1145/3343031.3351016

  19. Li, B., Yang, B., Liu, C., Liu, F., Ji, R., Ye, Q.: Beyond max-margin: Class margin equilibrium for few-shot object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7363–7372 (2021)

    Google Scholar 

  20. Li, Y., et al.: Few-shot object detection via classification refinement and distractor retreatment. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15395–15403 (2021)

    Google Scholar 

  21. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)

    Google Scholar 

  22. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)

    Google Scholar 

  23. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  24. Lin, T.Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  25. Liu, L., et al.: Deep learning for generic object detection: a survey. Int. J. Comput. Vis. 128(2), 261–318 (2020)

    Article  Google Scholar 

  26. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  27. Liu, Y.C., et al.: Unbiased teacher for semi-supervised object detection. In: International Conference on Learning Representations (2021)

    Google Scholar 

  28. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2009)

    Article  Google Scholar 

  29. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  30. Redmon, J., Farhadi, A.: Yolo9000: better, faster, stronger. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 7263–7271 (2017)

    Google Scholar 

  31. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. Adv. Neural. Inf. Process. Syst. 28, 91–99 (2015)

    Google Scholar 

  32. Sun, B., Li, B., Cai, S., Yuan, Y., Zhang, C.: FSCE: Few-shot object detection via contrastive proposal encoding. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7352–7362 (2021)

    Google Scholar 

  33. Tang, L., Li, B.: CLASS: cross-level attention and supervision for salient objects detection. In: Ishikawa, H., Liu, C.-L., Pajdla, T., Shi, J. (eds.) ACCV 2020. LNCS, vol. 12624, pp. 420–436. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-69535-4_26

    Chapter  Google Scholar 

  34. Tang, L., Li, B., Zhong, Y., Ding, S., Song, M.: Disentangled high quality salient object detection. In: 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021, Montreal, QC, Canada, October 10–17, 2021, pp. 3560–3570. IEEE (2021). https://doi.org/10.1109/ICCV48922.2021.00356

  35. Torrey, L., Shavlik, J.: Transfer learning. In: Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods, and Techniques, pp. 242–264. IGI global (2010)

    Google Scholar 

  36. Vilalta, R., Drissi, Y.: A perspective view and survey of meta-learning. Artificial Intell. Rev. 18(2), 77–95 (2002)

    Article  Google Scholar 

  37. Wang, X., Huang, T.E., Darrell, T., Gonzalez, J.E., Yu, F.: Frustratingly simple few-shot object detection. arXiv preprint arXiv:2003.06957 (2020)

  38. Wang, Y.X., Ramanan, D., Hebert, M.: Meta-learning to detect rare objects. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9925–9934 (2019)

    Google Scholar 

  39. Weiss, K., Khoshgoftaar, T.M., Wang, D.D.: A survey of transfer learning. J. Big Data 3(1), 1–40 (2016). https://doi.org/10.1186/s40537-016-0043-6

    Article  Google Scholar 

  40. Wu, A., Han, Y., Zhu, L., Yang, Y., Deng, C.: Universal-prototype augmentation for few-shot object detection. arXiv preprint arXiv:2103.01077 (2021)

  41. Wu, J., Liu, S., Huang, D., Wang, Y.: Multi-scale positive sample refinement for few-shot object detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12361, pp. 456–472. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58517-4_27

    Chapter  Google Scholar 

  42. Xiao, Y., Marlet, R.: Few-shot object detection and viewpoint estimation for objects in the wild. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12362, pp. 192–210. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58520-4_12

    Chapter  Google Scholar 

  43. Yan, X., Chen, Z., Xu, A., Wang, X., Liang, X., Lin, L.: Meta R-CNN: Towards general solver for instance-level low-shot learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9577–9586 (2019)

    Google Scholar 

  44. Yang, Z., Wang, Y., Chen, X., Liu, J., Qiao, Y.: Context-transformer: tackling object confusion for few-shot detection. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 12653–12660 (2020)

    Google Scholar 

  45. Yun, S., Han, D., Chun, S., Oh, S.J., Yoo, Y., Choe, J.: CutMix: Regularization strategy to train strong classifiers with localizable features. In: 2019 IEEE/CVF International Conference on Computer Vision, ICCV 2019, Seoul, Korea (South), October 27 - November 2, 2019, pp. 6022–6031. IEEE (2019)

    Google Scholar 

  46. Zhang, W., Wang, Y.X.: Hallucination improves few-shot object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13008–13017 (2021)

    Google Scholar 

  47. Zhao, Z.Q., Zheng, P., Xu, S.T., Wu, X.: Object detection with deep learning: a review. IEEE Trans. Neural Netw. Learn. Syst. 30(11), 3212–3232 (2019)

    Article  Google Scholar 

  48. Zhong, Y., Li, B., Tang, L., Kuang, S., Wu, S., Ding, S.: Detecting camouflaged object in frequency domain. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4504–4513 (2022)

    Google Scholar 

  49. Zhong, Y., Li, B., Tang, L., Tang, H., Ding, S.: Highly efficient natural image matting. CoRR abs/2110.12748 (2021), https://arxiv.org/abs/2110.12748

  50. Zhou, Q., et al.: TransVOD: end-to-end video object detection with spatial-temporal transformers. arXiv preprint arXiv:2201.05047 (2022)

Download references

Acknowledgment

This work is supported by National Key Research and Development Program of China (2019YFC1521104, 2021ZD0111000), National Natural Science Foundation of China (72192821, 61972157, 62176092, 62106075), Shanghai Municipal Science and Technology Major Project (2021SHZDZX0102), Art major project of National Social Science Fund (I8ZD22), Shanghai Science and Technology Commission (21511101200, 22YF1420300, 21511100700), Natural Science Foundation of Shanghai (20ZR1417700), CAAI-Huawei MindSpore Open Fund.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhizhong Zhang or Lizhuang Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ma, T. et al. (2022). Mutually Reinforcing Structure with Proposal Contrastive Consistency for Few-Shot Object Detection. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13680. Springer, Cham. https://doi.org/10.1007/978-3-031-20044-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20044-1_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20043-4

  • Online ISBN: 978-3-031-20044-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics