Skip to main content

Dual Contrastive Learning with Anatomical Auxiliary Supervision for Few-Shot Medical Image Segmentation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13680))

Included in the following conference series:

Abstract

Few-shot semantic segmentation is a promising solution for scarce data scenarios, especially for medical imaging challenges with limited training data. However, most of the existing few-shot segmentation methods tend to over rely on the images containing target classes, which may hinder its utilization of medical imaging data. In this paper, we present a few-shot segmentation model that employs anatomical auxiliary information from medical images without target classes for dual contrastive learning. The dual contrastive learning module performs comparison among vectors from the perspectives of prototypes and contexts, to enhance the discriminability of learned features and the data utilization. Besides, to distinguish foreground features from background features more friendly, a constrained iterative prediction module is designed to optimize the segmentation of the query image. Experiments on two medical image datasets show that the proposed method achieves performance comparable to state-of-the-art methods. Code is available at: https://github.com/cvszusparkle/AAS-DCL_FSS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: Slic superpixels. Technical report (2010)

    Google Scholar 

  2. Van den Bergh, M., Boix, X., Roig, G., de Capitani, B., Van Gool, L.: SEEDS: superpixels extracted via energy-driven sampling. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7578, pp. 13–26. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33786-4_2

    Chapter  Google Scholar 

  3. Boudiaf, M., Kervadec, H., Masud, Z.I., Piantanida, P., Ben Ayed, I., Dolz, J.: Few-shot segmentation without meta-learning: a good transductive inference is all you need? In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13979–13988 (2021)

    Google Scholar 

  4. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607. PMLR (2020)

    Google Scholar 

  5. Chen, X., Fan, H., Girshick, R., He, K.: Improved baselines with momentum contrastive learning. arXiv preprint arXiv:2003.04297 (2020)

  6. Dong, N., Xing, E.P.: Few-shot semantic segmentation with prototype learning. In: BMVC, vol. 3 (2018)

    Google Scholar 

  7. Fang, X., Yan, P.: Multi-organ segmentation over partially labeled datasets with multi-scale feature abstraction. IEEE Trans. Med. Imaging 39(11), 3619–3629 (2020)

    Article  Google Scholar 

  8. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. Int. J. Comput. Vis. 59(2), 167–181 (2004)

    Article  Google Scholar 

  9. Feng, R., et al.: Interactive few-shot learning: limited supervision, better medical image segmentation. IEEE Trans. Med. Imaging (2021)

    Google Scholar 

  10. Gao, Y., Fei, N., Liu, G., Lu, Z., Xiang, T.: Contrastive prototype learning with augmented embeddings for few-shot learning. In: Uncertainty in Artificial Intelligence, pp. 140–150. PMLR (2021)

    Google Scholar 

  11. Grill, J.B., et al.: Bootstrap your own latent-a new approach to self-supervised learning. Adv. Neural. Inf. Process. Syst. 33, 21271–21284 (2020)

    Google Scholar 

  12. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9729–9738 (2020)

    Google Scholar 

  13. Khosla, P., et al.: Supervised contrastive learning. Adv. Neural. Inf. Process. Syst. 33, 18661–18673 (2020)

    Google Scholar 

  14. Kim, S., An, S., Chikontwe, P., Park, S.H.: Bidirectional RNN-based few shot learning for 3D medical image segmentation. arXiv preprint arXiv:2011.09608 (2020)

  15. Kwon, H., Jeong, S., Kim, S., Sohn, K.: Dual prototypical contrastive learning for few-shot semantic segmentation. arXiv preprint arXiv:2111.04982 (2021)

  16. Landman, B., Xu, Z., Igelsias, J.E., Styner, M., Langerak, T., Klein, A.: Miccai multi-atlas labeling beyond the cranial vault-workshop and challenge. In: Proceedings of the MICCAI: Multi-Atlas Labeling Beyond Cranial Vault-Workshop Challenge (2015)

    Google Scholar 

  17. Li, G., Jampani, V., Sevilla-Lara, L., Sun, D., Kim, J., Kim, J.: Adaptive prototype learning and allocation for few-shot segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8334–8343 (2021)

    Google Scholar 

  18. Li, Y., Data, G.W.P., Fu, Y., Hu, Y., Prisacariu, V.A.: Few-shot semantic segmentation with self-supervision from pseudo-classes. arXiv preprint arXiv:2110.11742 (2021)

  19. Liu, C., et al.: Learning a few-shot embedding model with contrastive learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 8635–8643 (2021)

    Google Scholar 

  20. Liu, W., Wu, Z., Ding, H., Liu, F., Lin, J., Lin, G.: Few-shot segmentation with global and local contrastive learning. arXiv preprint arXiv:2108.05293 (2021)

  21. Liu, Y., Zhang, X., Zhang, S., He, X.: Part-aware prototype network for few-shot semantic segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12354, pp. 142–158. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58545-7_9

    Chapter  Google Scholar 

  22. Lu, Z., He, S., Zhu, X., Zhang, L., Song, Y.Z., Xiang, T.: Simpler is better: few-shot semantic segmentation with classifier weight transformer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8741–8750 (2021)

    Google Scholar 

  23. Majumder, O., Ravichandran, A., Maji, S., Achille, A., Polito, M., Soatto, S.: Supervised momentum contrastive learning for few-shot classification. arXiv preprint arXiv:2101.11058 (2021)

  24. Mondal, A.K., Dolz, J., Desrosiers, C.: Few-shot 3D multi-modal medical image segmentation using generative adversarial learning. arXiv preprint arXiv:1810.12241 (2018)

  25. Moore, A.P., Prince, S.J., Warrell, J., Mohammed, U., Jones, G.: SuperPixel lattices. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2008)

    Google Scholar 

  26. Van den Oord, A., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. arXiv e-prints pp. arXiv-1807 (2018)

    Google Scholar 

  27. Ouali, Y., Hudelot, C., Tami, M.: Spatial contrastive learning for few-shot classification. In: Oliver, N., Pérez-Cruz, F., Kramer, S., Read, J., Lozano, J.A. (eds.) ECML PKDD 2021. LNCS (LNAI), vol. 12975, pp. 671–686. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86486-6_41

    Chapter  Google Scholar 

  28. Ouyang, C., Biffi, C., Chen, C., Kart, T., Qiu, H., Rueckert, D.: Self-supervision with superpixels: training few-shot medical image segmentation without annotation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12374, pp. 762–780. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58526-6_45

    Chapter  Google Scholar 

  29. Rakelly, K., Shelhamer, E., Darrell, T., Efros, A.A., Levine, S.: Few-shot segmentation propagation with guided networks. arXiv preprint arXiv:1806.07373 (2018)

  30. Roy, A.G., Navab, N., Wachinger, C.: Recalibrating fully convolutional networks with spatial and channel “squeeze and excitation" blocks. IEEE Trans. Med. Imaging 38(2), 540–549 (2018)

    Article  Google Scholar 

  31. Roy, A.G., Siddiqui, S., Pölsterl, S., Navab, N., Wachinger, C.: ‘squeeze & excite’guided few-shot segmentation of volumetric images. Med. Image Anal. 59, 101587 (2020)

    Article  Google Scholar 

  32. Shaban, A., Bansal, S., Liu, Z., Essa, I., Boots, B.: One-shot learning for semantic segmentation. arXiv preprint arXiv:1709.03410 (2017)

  33. Shen, X., Zhang, G., Lai, H., Luo, J., Lu, J., Luo, Y.: PoissonSeg: semi-supervised few-shot medical image segmentation via poisson learning. In: 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 1513–1518. IEEE (2021)

    Google Scholar 

  34. Shi, G., Xiao, L., Chen, Y., Zhou, S.K.: Marginal loss and exclusion loss for partially supervised multi-organ segmentation. Med. Image Anal. 70, 101979 (2021)

    Article  Google Scholar 

  35. Sun, L., et al.: Few-shot medical image segmentation using a global correlation network with discriminative embedding. Comput. Biol. Med. 140, 105067 (2022)

    Article  Google Scholar 

  36. Tang, H., Liu, X., Sun, S., Yan, X., Xie, X.: Recurrent mask refinement for few-shot medical image segmentation. arXiv preprint arXiv:2108.00622 (2021)

  37. Tian, Z., Zhao, H., Shu, M., Yang, Z., Li, R., Jia, J.: Prior guided feature enrichment network for few-shot segmentation. IEEE Trans. Pattern Anal. Mach. Intell. (2020)

    Google Scholar 

  38. Valindria, V.V., et al.: Multi-modal learning from unpaired images: application to multi-organ segmentation in CT and MRI. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 547–556. IEEE (2018)

    Google Scholar 

  39. Wang, H., Zhang, X., Hu, Y., Yang, Y., Cao, X., Zhen, X.: Few-shot semantic segmentation with democratic attention networks. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12358, pp. 730–746. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58601-0_43

    Chapter  Google Scholar 

  40. Wang, K., Liew, J.H., Zou, Y., Zhou, D., Feng, J.: PANet: Few-shot image semantic segmentation with prototype alignment. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9197–9206 (2019)

    Google Scholar 

  41. Wei, Y., Tian, J., Zhong, C., Shi, Z.: AKFNET: an anatomical knowledge embedded few-shot network for medical image segmentation. In: 2021 IEEE International Conference on Image Processing (ICIP), pp. 11–15. IEEE (2021)

    Google Scholar 

  42. Wu, Z., Efros, A.A., Yu, S.X.: Improving generalization via scalable neighborhood component analysis. In: European Conference on Computer Vision, pp. 685–701 (2018)

    Google Scholar 

  43. Xiao, J., Xu, H., Zhao, W., Cheng, C., Gao, H.: A prior-mask-guided few-shot learning for skin lesion segmentation. Computing, pp. 1–23 (2021)

    Google Scholar 

  44. Yang, B., Liu, C., Li, B., Jiao, J., Ye, Q.: Prototype mixture models for few-shot semantic segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12353, pp. 763–778. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58598-3_45

    Chapter  Google Scholar 

  45. Yu, Q., Dang, K., Tajbakhsh, N., Terzopoulos, D., Ding, X.: A location-sensitive local prototype network for few-shot medical image segmentation. In: 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), pp. 262–266. IEEE (2021)

    Google Scholar 

  46. Zhang, B., Xiao, J., Qin, T.: Self-guided and cross-guided learning for few-shot segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8312–8321 (2021)

    Google Scholar 

  47. Zhang, C., Lin, G., Liu, F., Yao, R., Shen, C.: CANet: Class-agnostic segmentation networks with iterative refinement and attentive few-shot learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognitionm, pp. 5217–5226 (2019)

    Google Scholar 

  48. Zhang, D., Huang, G., Zhang, Q., Han, J., Han, J., Yu, Y.: Cross-modality deep feature learning for brain tumor segmentation. Pattern Recogn. 110, 107562 (2021)

    Article  Google Scholar 

  49. Zhang, L., et al.: Generalizing deep learning for medical image segmentation to unseen domains via deep stacked transformation. IEEE Trans. Med. Imaging 39(7), 2531–2540 (2020)

    Article  Google Scholar 

  50. Zhang, X., Wei, Y., Yang, Y., Huang, T.S.: SG-One: similarity guidance network for one-shot semantic segmentation. IEEE Trans. Cybern. 50(9), 3855–3865 (2020)

    Article  Google Scholar 

  51. Zhao, A., Balakrishnan, G., Durand, F., Guttag, J.V., Dalca, A.V.: Data augmentation using learned transformations for one-shot medical image segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8543–8553 (2019)

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China under Grant 61973221 and Grant 62273241, the Natural Science Foundation of Guangdong Province of China under Grant 2018A030313381 and Grant 2019A1515011165.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huisi Wu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1392 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, H., Xiao, F., Liang, C. (2022). Dual Contrastive Learning with Anatomical Auxiliary Supervision for Few-Shot Medical Image Segmentation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13680. Springer, Cham. https://doi.org/10.1007/978-3-031-20044-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20044-1_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20043-4

  • Online ISBN: 978-3-031-20044-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics