Abstract
The historical trajectories previously passing through a location may help infer the future trajectory of an agent currently at this location. Despite great improvements in trajectory forecasting with the guidance of high-definition maps, only a few works have explored such local historical information. In this work, we re-introduce this information as a new type of input data for trajectory forecasting systems: the local behavior data, which we conceptualize as a collection of location-specific historical trajectories. Local behavior data helps the systems emphasize the prediction locality and better understand the impact of static map objects on moving agents. We propose a novel local-behavior-aware (LBA) prediction framework that improves forecasting accuracy by fusing information from observed trajectories, HD maps, and local behavior data. Also, where such historical data is insufficient or unavailable, we employ a local-behavior-free (LBF) prediction framework, which adopts a knowledge-distillation-based architecture to infer the impact of missing data. Extensive experiments demonstrate that upgrading existing methods with these two frameworks significantly improves their performances. Especially, the LBA framework boosts the SOTA methods’ performance on the nuScenes dataset by at least 14% for the \(K=1\) metrics. Code is at https://github.com/Kay1794/LocalBehavior-based-trajectory-prediction.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alahi, A., Goel, K., Ramanathan, V., Robicquet, A., Fei-Fei, L., Savarese, S.: Social LSTM: human trajectory prediction in crowded spaces. In: Proceedings of the IEEE Conference On Computer Vision and Pattern Recognition, pp. 961–971 (2016)
Bennewitz, M., Burgard, W., Thrun, S.: Learning motion patterns of persons for mobile service robots. In: Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No. 02CH37292), vol. 4, pp. 3601–3606. IEEE (2002)
Caesar, H., et al.: nuscenes: A multimodal dataset for autonomous driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11621–11631 (2020)
Carrasco, S., Llorca, D.F., Sotelo, M.Á.: SCOUT: socially-consistent and understandable graph attention network for trajectory prediction of vehicles and VRUs. arXiv preprint arXiv:2102.06361 (2021)
Casas, S., Luo, W., Urtasun, R.: Intentnet: learning to predict intention from raw sensor data. In: Conference on Robot Learning, pp. 947–956. PMLR (2018)
Chang, M.F., et al.: Argoverse: 3d tracking and forecasting with rich maps. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8748–8757 (2019)
Chen, G., Choi, W., Yu, X., Han, T., Chandraker, M.: Learning efficient object detection models with knowledge distillation. Adv. Neural. Inf. Process. Syst. 30, 1–10 (2017)
De Leege, A., van Paassen, M., Mulder, M.: A machine learning approach to trajectory prediction. In: AIAA Guidance, Navigation, and Control (GNC) Conference, p. 4782 (2013)
Deo, N., Trivedi, M.M.: Trajectory forecasts in unknown environments conditioned on grid-based plans. arXiv preprint arXiv:2001.00735 (2020)
Deo, N., Wolff, E., Beijbom, O.: Multimodal trajectory prediction conditioned on lane-graph traversals. In: 5th Annual Conference on Robot Learning (2021)
Gao, J., et al.: VectorNet: Encoding HD maps and agent dynamics from vectorized representation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11525–11533 (2020)
Gilles, T., Sabatini, S., Tsishkou, D., Stanciulescu, B., Moutarde, F.: Gohome: graph-oriented heatmap output for future motion estimation. arXiv preprint arXiv:2109.01827 (2021)
Gilles, T., Sabatini, S., Tsishkou, D., Stanciulescu, B., Moutarde, F.: Home: heatmap output for future motion estimation. arXiv preprint arXiv:2105.10968 (2021)
Gilles, T., Sabatini, S., Tsishkou, D., Stanciulescu, B., Moutarde, F.: Thomas: trajectory heatmap output with learned multi-agent sampling. arXiv:2110.06607 (2021)
Gu, J., Sun, C., Zhao, H.: DenseTNT: end-to-end trajectory prediction from dense goal sets. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 15303–15312 (2021)
Hao, Y., Fu, Y., Jiang, Y.G., Tian, Q.: An end-to-end architecture for class-incremental object detection with knowledge distillation. In: 2019 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6. IEEE (2019)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
He, T., Shen, C., Tian, Z., Gong, D., Sun, C., Yan, Y.: Knowledge adaptation for efficient semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 578–587 (2019)
Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 (2015)
Hu, Y., Chen, S., Zhang, Y., Gu, X.: Collaborative motion prediction via neural motion message passing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6319–6328 (2020)
Kim, B., Kang, C.M., Kim, J., Lee, S.H., Chung, C.C., Choi, J.W.: Probabilistic vehicle trajectory prediction over occupancy grid map via recurrent neural network. In: 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), pp. 399–404. IEEE (2017)
Li, Y., Ren, S., Wu, P., Chen, S., Feng, C., Zhang, W.: Learning distilled collaboration graph for multi-agent perception. arXiv preprint arXiv:2111.00643 (2021)
Liang, M., et al.: Learning lane graph representations for motion forecasting. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 541–556. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_32
Liu, Y., Zhang, J., Fang, L., Jiang, Q., Zhou, B.: Multimodal motion prediction with stacked transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7577–7586 (2021)
Liu, Y., Chen, K., Liu, C., Qin, Z., Luo, Z., Wang, J.: Structured knowledge distillation for semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2604–2613 (2019)
Liu, Y., Dong, X., Lu, X., Khan, F.S., Shen, J., Hoi, S.: Teacher-students knowledge distillation for Siamese trackers. arXiv preprint arXiv:1907.10586 (2019)
Luo, Y., Cai, P., Bera, A., Hsu, D., Lee, W.S., Manocha, D.: PORCA: modeling and planning for autonomous driving among many pedestrians. IEEE Robot. Autom. Lett. 3(4), 3418–3425 (2018)
Marchetti, F., Becattini, F., Seidenari, L., Bimbo, A.D.: MANTRA: memory augmented networks for multiple trajectory prediction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7143–7152 (2020)
Messaoud, K., Deo, N., Trivedi, M.M., Nashashibi, F.: Trajectory prediction for autonomous driving based on multi-head attention with joint agent-map representation. arXiv preprint arXiv:2005.02545 (2020)
Nikhil, N., Morris, B.T.: Convolutional neural network for trajectory prediction. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11131, pp. 186–196. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11015-4_16
Phan-Minh, T., Grigore, E.C., Boulton, F.A., Beijbom, O., Wolff, E.M.: CoverNet: multimodal behavior prediction using trajectory sets. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14074–14083 (2020)
Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: deep hierarchical feature learning on point sets in a metric space. arXiv preprint arXiv:1706.02413 (2017)
Salzmann, T., Ivanovic, B., Chakravarty, P., Pavone, M.: Trajectron++: dynamically-feasible trajectory forecasting with heterogeneous data. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12363, pp. 683–700. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58523-5_40
Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph neural network model. IEEE Trans. Neural Netw. 20(1), 61–80 (2008)
Sun, C., Karlsson, P., Wu, J., Tenenbaum, J.B., Murphy, K.: Stochastic prediction of multi-agent interactions from partial observations. arXiv preprint arXiv:1902.09641 (2019)
Sun, C., Shrivastava, A., Vondrick, C., Sukthankar, R., Murphy, K., Schmid, C.: Relational action forecasting. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 273–283 (2019)
Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)
Wang, C., Wang, Y., Xu, M., Crandall, D.J.: Stepwise goal-driven networks for trajectory prediction. arXiv preprint arXiv:2103.14107 (2021)
Xu, C., Li, M., Ni, Z., Zhang, Y., Chen, S.: GroupNet: multiscale hypergraph neural networks for trajectory prediction with relational reasoning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6498–6507 (2022)
Xu, C., Mao, W., Zhang, W., Chen, S.: Remember intentions: retrospective-memory-based trajectory prediction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6488–6497 (2022)
Ye, M., Cao, T., Chen, Q.: TPCN: temporal point cloud networks for motion forecasting. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11318–11327 (2021)
Yu, C., Ma, X., Ren, J., Zhao, H., Yi, S.: Spatio-temporal graph transformer networks for pedestrian trajectory prediction. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12357, pp. 507–523. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58610-2_30
Zeng, W., Liang, M., Liao, R., Urtasun, R.: LanerCNN: distributed representations for graph-centric motion forecasting. arXiv preprint arXiv:2101.06653 (2021)
Zhao, H., et al.: Tnt: Target-driven trajectory prediction. arXiv preprint arXiv:2008.08294 (2020)
Zhao, H., Wildes, R.P.: Where are you heading? Dynamic trajectory prediction with expert goal examples. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7629–7638 (2021)
Acknowledgements
National Natural Science Foundation of China under Grant 62171276, the Science and Technology Commission of Shanghai Municipal under Grant 21511100900, CCF-DiDi GAIA Research Collaboration Plan 202112 and CALT 2021-01.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Zhong, Y., Ni, Z., Chen, S., Neumann, U. (2022). Aware of the History: Trajectory Forecasting with the Local Behavior Data. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13682. Springer, Cham. https://doi.org/10.1007/978-3-031-20047-2_23
Download citation
DOI: https://doi.org/10.1007/978-3-031-20047-2_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20046-5
Online ISBN: 978-3-031-20047-2
eBook Packages: Computer ScienceComputer Science (R0)