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Fig. 1: Given only a single reference view as input, our novel semi-supervised
framework effectively trains a neural radiance field. In contrast, previous
method [9] shows inconsistent geometry when synthesizing novel views.

Abstract. Despite the rapid development of Neural Radiance Field
(NeRF), the necessity of dense covers largely prohibits its wider ap-
plications. While several recent works have attempted to address this
issue, they either operate with sparse views (yet still, a few of them)
or on simple objects/scenes. In this work, we consider a more ambi-
tious task: training neural radiance field, over realistically complex vi-
sual scenes, by “looking only once”, i.e., using only a single view. To
attain this goal, we present a Single View NeRF (SinNeRF) frame-
work consisting of thoughtfully designed semantic and geometry reg-
ularizations. Specifically, SinNeRF constructs a semi-supervised learn-
ing process, where we introduce and propagate geometry pseudo labels
and semantic pseudo labels to guide the progressive training process.
Extensive experiments are conducted on complex scene benchmarks,
including NeRF synthetic dataset, Local Light Field Fusion dataset,
and DTU dataset. We show that even without pre-training on multi-
view datasets, SinNeRF can yield photo-realistic novel-view synthesis
results. Under the single image setting, SinNeRF significantly outper-
forms the current state-of-the-art NeRF baselines in all cases. Project
page: https://vita-group.github.io/SinNeRF/
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1 Introduction

Synthesizing photo-realistic images has been one of the most essential goals
in the area of computer vision. Recently, the field of novel view synthesis has
gained tremendous popularity with the success of coordinate-based neural net-
works. Neural radiance field (NeRF) [31], as an effective scene representation,
has prevailed among image-based rendering approaches.

Despite its great success, NeRF is impeded by the stringent requirement of
the dense views captured from different angles and the corresponding camera
poses. As has been implied by recent literature [34]., training a neural radiance
field without sufficient views will end up with drastic performance degradation,
including incorrect geometry and blurry appearance. Meanwhile, it could be chal-
lenging or even infeasible in real-world scenarios to collect a sufficiently dense
coverage of views for specific applications such as AR/VR or autonomous driv-
ing. Motivated by this, many researchers attempt to address this fragility in the
sparse view setting [62,34,21,24,9,6]. One line of research [62,6] aggregates avail-
able learning priors from adequate pre-training on large-scale datasets. Other
approaches propose various regularizations on color and geometry of different
views [9,21,24,34]. However, most aforementioned works still necessitate multi-
ple view inputs, with a minimum requirement of three views [34,9].

In contrast to previous works, we push the setting of sparse views to the
extreme by training a neural radiance field on only one single view. To our
best knowledge, few efforts have been made to explore this circumstance before.
PixelNeRF [62] takes the first attempt by pre-training a feature extractor on a
large-scale dataset. Although they report impressive results on simple objects
(e.g., ShapeNet dataset [5]), their performance on complex scenes [22] is less
than satisfactory. Others [25,41] demonstrate good performance on novel-view
synthesis. However, their platforms are based on other techniques (e.g., multi-
plane images). Different from those previous research, our work aims at training
the neural radiance field from scratch, without bells and whistles, to generate
photo-realistic novel views of complex scenes.

Nevertheless, training a neural radiance field with a single image is frus-
tratingly challenging. First and foremost, reconstructing an accurate 3D shape
from a single image meets several hurdles. Previous research has addressed re-
constructing different types of objects from a single image [56,37]. Especially,
Pixel2Mesh [56] proposes to reconstruct the 3D shape from a single image and
expressed it in a triangular mesh. PIFu [37] adopts a 3D occupancy field to
recover high-resolution surfaces of humans. NID [57] utilizes a pre-trained dic-
tionary to acquire implicit fields from sparse measurements. However, all these
approaches count on the prior knowledge specific to a certain object class or in-
stance. Thus it can not work for complex scene reconstruction. Moreover, even in
the simpler 2D cases, the exploration of training on single images is still gaining
much interest as an open problem up to now [40,42,44,51]. SIREN [44] intro-
duces a periodic activation for implicit functions to better fit a single image.
SinGAN [40] and InGAN [42] propose to train generative adversarial networks
(GANs) using a single image as a reference. Their models can generate visually-
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pleasing results of images with similar content, but their results often boiled
down to approximately replicating or re-composing the patches or textural pat-
terns from the given images, and hence cannot serve the purpose of modeling
sophisticated 3D view transformations.

Our inspiration draws from generating pseudo labels according to the avail-
able single view, which enables us to design a semi-supervised training strategy
to constrain the learned radiance field. Specifically, we design two categories
of pseudo labels to capture complementary hidden information. The first one
focuses on the geometry of the radiance field, where we reproject depth infor-
mation between reference view and unseen views through image warping [19],
thus ensuring multi-view geometry consistency of our trained radiance field. The
second one focuses on the semantic fidelity of the unseen views. We utilize a dis-
criminator and a pre-trained Vision Transformer (ViT [10]) to constrain the
unseen views: the former helps improve each unseen view’s local textures, while
the latter focuses on the perceptual quality of their global structures.

Our main contributions can be summarized as follows:

– We propose SinNeRF, a novel semi-supervised framework to train a neural
radiance field in complex scenes effectively, using a single reference view.

– We introduce and propagate geometry and semantic pseudo labels to jointly
guide the progressive training process. The former is inspired by image warp-
ing to ensure multi-view geometry consistency, and the latter enforces the
perceptual quality of local textures as well as global structures.

– We conduct extensive experiments on complex scene benchmarks and show
that SinNeRF can yield photo-realistic novel-view synthesis results without
bells and whistles. Under the single image setting, SinNeRF significantly
outperforms state-of-the-art NeRF baselines in all cases.

2 Related Works

2.1 Neural Radiance Field

Neural Radiance Fields (NeRFs) [31] have demonstrated encouraging progress
for view synthesis by learning an implicit neural scene representation. Since its
origin, tremendous efforts have been made to improve its quality [52,2,3,17,46,7],
speed [32,36,47,15], artistic effects [53,13,20], and generalization ability [6,58,29,62].
Specifically, Barron et al. [2] propose to cast a conical frustum instead of a sin-
gle ray for the purpose of anti-aliasing. Mip-NeRF 360 [3] further extends it
to the unbounded scenes with efficient parameterization. KiloNeRF [36] speeds
up NeRF by adopting thousands of tiny MLPs. MVSNeRF [6] extracts a 3D
cost volume [60,16] and renders high-quality images from novel viewpoints on
unseen scenes. The most related works to SinNeRF target the sparse view set-
ting [62,9,34,21] Especially, DS-NeRF [9] adopts additional depth supervision to
improve the reconstruction quality. RegNeRF [34] proposes a normalizing flow
and depth smoothness regularization. DietNeRF [21] utilizes the CLIP embed-
dings [35] to add semantic constraints for unseen views. However, the CLIP
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embeddings can only be obtained from low-resolution inputs due to memory is-
sues. Thus it struggles to obtain texture details. Meanwhile, these methods can
only perform well on at least two or three input views. PixelNeRF [62] utilizes
a ConvNets encoder to extract context information by large-scale pre-training,
and successfully renders novel views from a single input. However, it can only
work on simple objects (e.g., ShapeNet [5]) while the results on complex scenes
remain unknown. In our work, we focus on the challenging setting of using only
one single view without any pre-training on multi-view datasets.

2.2 Single View 3D Reconstruction

Single view 3D reconstruction is a long-standing problem. Early methods use
shape-from-shading [11] or adopt texture [26] and defocus [14] cues. These tech-
niques rely on the existing regions of the images using a depth cue. More re-
cent approaches hallucinate the invisible parts using learned priors. Johnston et
al. [23] adopt an inverse discrete cosine transform decoder. Fan et al. [12] directly
regresses the point clouds. Wu et al. [59] learns a mapping from input images to
2.5D sketches and maps the intermediate representations to the final 3D shapes.
However, very few datasets are available for 3D annotation, and most of these
methods use ShapeNet [5] which contains objects of simple shapes. There are
also attempts to reconstruct the 3D shape of specific objects (e.g. humans).
PiFU [37] utilizes a 3D occupancy field to recover the 3D geometry of clothed
humans. DeepHuman [65] adopts an image-guided volume-to-volume translation
framework. NormalGAN [55] conditions a generative adversarial network on the
normal maps of the reference view.

Another line of research focuses on learning a 3D representation for view
synthesis. Explicit representations involve volumetric representations [39,18,45],
layer depth images (LDI) [49,41], and multiplane images (MPI) [30]. Implicit
representations use coordinate-based networks to train a neural scene represen-
tation on one single view. PixelNeRF [62] takes the first attempt by utilizing
a pre-trained feature extractor on large-scale dataset. Their results on complex
scenes are less than satisfactory compared to their impressive results on sim-
ple objects from ShapeNet [5]. GRF [48] proposes a generative radiance field
modeling 3D geometries by projecting the features of 2D images to 3D points.
MINE [25] learns a continuous depth MPI and uses volumetric rendering to
synthesize novel views. Our work is fundamentally different from existing works
in these ways: 1) we train a neural scene representation from scratch without
relying on pre-trained feature extractors or multi-plane images; 2) we conduct
experiments on complex 3D environments and yield photo-realistic rendered re-
sults.

2.3 Single Image Training

Single image training is a field of great interest in 2D computer vision. Sin-
GAN [40] and InGAN [42] propose a generative adversarial network trained
using a single image as reference. Their models can generate visually-pleasing
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Fig. 2: An overview of our SinNeRF, where we synthesize patches from the refer-
ence view and unseen views. We train this semi-supervised framework via ground
truth color and depth labels of the reference view and pseudo labels on unseen
views. We use image warping to obtain geometry pseudo labels and utilize ad-
versarial training as well as a pre-trained ViT for semantic pseudo labels.

results containing similar content of the image, but the diversity is limited, and
their results often copy-paste different patches from the original image. Dmitry
et al. [51] investigate the deep image prior of convolutional networks and show
excellent results in image restoration. More recently, SIREN [44] proposes a pe-
riodic activation for implicit functions to fit a single image by supervising the
gradients of networks. In this work, we make further attempts to adversarially
train a radiance field using a single image.

3 Method

3.1 Overview

The setting of only one single view available is challenging for NeRF, as train-
ing directly on the available view leads to overfitting on the reference view and
results in a collapsed neural radiance field. To tackle this problem, we build
our SinNeRF as a semi-supervised framework to provide necessary constraints
on unseen views. We treat the reference view with RGB and available depth
as the labeled set, while the unseen views are considered as the unlabeled set.
To help the neural radiance field render reasonable results on the unseen views,
we introduce two types of supervision signals from the perspective of geometry
and semantic constraints. We will first introduce the preliminary of neural radi-
ance field and semi-supervised learning framework, then the progressive training
strategies.

3.2 Preliminary

Neural Radiance Fields (NeRFs) [31] synthesize images sampling 5D coordinates
(location (x, y, z) and viewing direction (θ, ϕ)) along camera rays, map them to
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color (r, g, b) and volume density σ. Mildenhall et al. [31] first propose to use
coordinate-based multi-layer perception networks (MLPs) to parameterize this
function and then use volumetric rendering techniques to alpha composite the
values at each location and obtain the final rendered images.

Given a pixel r(t) = o + td, where o is the camera origin and d is the ray
direction, pixel’s predicted color is defined as follows:

Ĉ(r) =

∫ tf

tn

T (t)σ(r(t))c(r(t), d)dt, (1)

where T (t) = exp
(
−
∫ t

tn
σ(r(s))ds

)
, σ(·) and c(·, ·) are densities and color pre-

dictions from the network. Due to the computational cost, the continuous in-
tegral is numerically estimated using quadrature [31]. NeRF [31] optimize the
radiance field by minimizing the mean squared error between rendered color and
the ground truth color,

Lpix =
∑
r∈Ri

||(C(r)− Ĉ(r))||2, (2)

where Ri is the set of input rays during training.

3.3 Geometry Pseudo Label

Directly overfitting on the reference images leads to a corrupted neural radiance
field collapsing towards the provided views. The issue is much more severe when
there is only one training image. Without multi-view supervision, NeRF is not
able to learn the inherent geometry of the scene and thus fails to build a view-
consistent representation. Similar to previous works [61] to reconstruct a 3D
shape from a single image, we start by adopting the depth prior to reconstructing
reasonable 3D geometry. As suggested by [9], adding another depth supervision
can significantly improve the learned geometry. However, since only a single
training view is available in our setting, simply adopting depth supervision can
not produce a reasonable 3D shape, as shown in Fig. 3.

To best utilize the available information in the reference view, we propose
to propagate it to other views through image warping [19]. For pixel pi(xi, yi)
in reference view Iref, the corresponding pixel pj(xj , yj) in the j-th unseen view
Iunseen can be formulated as:

pj = KunseenT (K
−1
ref Zipi), (3)

where Zi is the available depth of reference view, T refers to the relationship
between camera extrinsic matrices from Iref to Iunseen, and Kref and Kunseen

refer to the camera intrinsic matrices. We further adopt the Painter’s Algorithm
[33]when multiple points in the reference view are projected to the same point
in the unseen view and select the point with the smallest depth as the warping
result.
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Through image warping, we then obtain the depth map of an unseen view,
which further serves as the pseudo ground truth label. Nevertheless, there is
still an unavoidable gap between this pseudo ground truth and its real corre-
spondence, since small misalignment in the predicted depth map can cause large
errors when projected to other views. Moreover, it is quite common that the
projected results contain some uncertain regions due to the occlusion. To regu-
larize the uncertain regions in the warped results, we utilize the self-supervised
inverse depth smoothness loss [54], which uses the second-order gradients of the
RGB pixel value to encourage the smoothness of the predicted depths:

Lsmooth (di) = e−∇2I(xi) (|∂xxdi|+ |∂xydi|+ |∂yydi|) , (4)

where di is the depth map, ∇2I(xi) refers to the Laplacian of pixel value at
location xi. Similar to [54], we calculate this loss on a downscaled resolution.

We also reproject the unseen views back to the reference view to enforce ge-
ometry consistency. In summary, the geometry pseudo label is utilized as follows,

Lgeo = L1(d1, f(d2)) + L1(f(d1), d2) + λ4Lsmooth, (5)

where λ4 is empirically set to be 0.1 in all our experiments, d1 and d2 refer to
the depths of two views, and f(·) refers to the image warping result of the other
view using the current view’s depth information.

3.4 Semantic Pseudo Label

Since the rendered color and texture might still be inconstant across different
views, image warping can only project depth information. We propose to adopt
semantic pseudo labels to regularize the learned appearance representation. Un-
like the geometry pseudo labels, where we enforce the consistency in 3D space,
semantic pseudo labels are adopted to regularize the 2D image fidelity. Con-
cretely speaking, we introduce a local texture guidance loss implemented by
adversarial learning, and a global structure prior supported by a pre-trained
ViT network. The two complementary guidances collaboratively help SinNeRF
render visually-pleasing results in each view.

Local Texture Guidance The local texture guidance is implemented via a
patch discriminator. The outputs from NeRF are considered as fake samples,
and the patches randomly cropped from the reference view are regarded as real
samples. Since the available training data are too limited, the discriminator tends
to memorize the entire training set. To overcome this issue, we adopt differen-
tiable augmentation [64] for our discriminator to improve its data efficiency:

LD = Ex∼pdata (x) [fD(−D(T (x)))] + Ez∼p(z) [fD(D(T (G(z))))] ,

LG = Ez∼p(z) [fG(−D(T (G(z))))] ,

Ladv = LD + LG,

(6)
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where T refers to the augmentation applied on both real and fake samples. We
train the GAN framework using Hinge loss [27], so fD(x) = max(0, 1 + x) and
fG(x) = x. The architecture of our discriminator is a cascade of convolutional
layers. More details about the discriminator design is provided in the supple-
mentary materials.

Global Structure Prior Vision transformers (ViT) have been proven to be an
expressive semantic prior, even between images with misalignment [50,1]. Simi-
lar to [21], we propose to adopt a pre-trained ViT for global structure guidance,
which enforces semantic consistency between unseen views and the reference
view. Although there exists pixel-wise misalignment between the views, we ob-
serve that the extracted representation of ViT is robust to this misalignment
and provides supervision at the semantic level. Intuitively, this is because the
content and style of the two views are similar, and a deep network is capable of
learning invariant representation.

Here we adopt DINO-ViT [4], a self-supervised vision transformer trained
on ImageNet [8] dataset. Unlike DietNeRF [21] which utilizes a CLIP-ViT [35]
and adopts its projected images embeddings as features, we directly extract the
[CLS] token from DINO-ViT’s output. This approach is more straightforward
since the [CLS] token serves as a representation of an entire image [10]. The
intuition also aligns with the recent findings of [50], where ViT architecture can
capture semantic appearance after self-supervised pre-training. We calculate L2

distance between the extracted features,

Lcls = ||fvit(A)− fvit(B)||2 (7)

where fvit(·) refers to the extracted [CLS] tokens. A and B are patches from the
reference view and an unseen view, respectively.

3.5 Progressive Training Strategy

To stabilize the training of the GAN framework, we apply a progressive sampling
strategy to the training of a single view neural radiance field.

Progressive Strided Ray Sampling: We start from utilizing a stride sam-
pling [38] of ray generation and progressively reduce the stride size during train-
ing. This design enables our SinNeRF to cover a much larger region with a
limited amount of rays. Specifically, the K ×K patch P of stride s containing
point (u, v) is defined as a set of 2D image coordinates,

P(u, v, s) = {(u+ sx, v + sy) | x, y ∈ {0, . . . ,K}} . (8)

Under this circumstance, the NeRF is able to generate a K×K patch represent-
ing a large aspect of the scene. During training, we randomly sample two patches
in each iteration, with the first one from the reference view and the other one
from a random unseen view. After that, the collaborative local texture guidance
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and global structure prior loss are applied on these patches to provide semantic
guidance on the unseen views. Meanwhile, we obtain the geometry pseudo labels
via image warping and add regularization on each patch’s intersection with the
corresponding patch’s warped result. As the training goes into the latter stages,
the stride s decreases so that the framework starts to focus on more local regions.
Note that we randomly initialize the discriminator after reducing the stride size.
This helps the discriminator focus on a fixed resolution, making the training
more stable.

Progressive Gaussian Pose Sampling: After that, we propose to progres-
sively enlarge the viewing angle during training. During training, we start at a
local neighbor of the reference view and progressively rotate the camera pose
more as the training proceeds. This helps the network to focus on dealing with
the confident regions and stabilize training as the output image patches will have
a good quality when the camera pose is only slightly different from the reference
view. Specifically, we represent the distance between an unseen view and the
reference view as Euler angles. Let (α, β, ϕ) denote the signed angles between
the axis in the reference view’s camera coordinate and the axis in the unseen
views’ camera coordinates. In each iteration, we sample α, β, ϕ each based on a
Gaussian distribution N (0, ω2), where ω increases with more iterations.

We show the overall loss function as follows:

Ltotal = Lpix + λ1Lgeo + λ2Ladv + λ3Lcls, (9)

where λ1, λ2, λ3 are weighting factors. We anneal the loss weight during train-
ing. In the early stages where we use a large stride and the patch covers the
major regions of the original image, the global structure prior is given a large
weight λ3 compared to the weight of local texture guidance λ2. As the train-
ing proceeds, we reduce the stride to focus on reconstructing the high-frequency
details. Consequently, we reduce the weight of global structure prior λ3 and in-
crease the weight of local texture guidance λ2. In all our experiments, λ1, λ2, and
λ3 are initialized to be 8, 0.1, and 0, respectively. During the training process,
we gradually decrease λ2 to 0 and increase λ3 to 0.1 with a linear function.

4 Experiment

4.1 Implementation Details

We use the same architecture as the original NeRF paper [31]. During training
iterations, we randomly sample two patches of rays from both the reference view
and a random sampled unseen view. The size of patches on NeRF synthetic
(Blender) dataset, Local Light Field Fusion (LLFF) dataset, and DTU dataset
are set as 64× 64, 84× 63, and 70× 56, respectively. The rendered patches are
then sent to the discriminator and DINO-ViT network, where we additionally
resize its input patches to 224 × 224 resolution to fit the input resolution of
DINO-ViT architecture. We train our framework using RAdam optimizer [28],
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DS-NeRF [9] PixelNeRF [62] DietNeRF [21] SinNeRF Target Image

Fig. 3: Novel view synthesis results of different methods on NeRF synthetic and
LLFF Dataset.

with an initial learning rate of 1e − 3. We decay the learning rate by half after
every 10k iterations. The learning rate of the discriminator is kept to be 20%
of the MLP’s learning rate. The stride for sampling the patches starts at 6 and
gradually reduces by 2 after every 10k iterations. All experiments of SinNeRF are
conducted on an NVIDIA RTX A6000 GPU. The whole training process takes
several hours for each scene. More implementation details and visual results are
provided in the supplementary.

4.2 Evaluation Protocol

We perform experiments on NeRF synthetic dataset [31], Local Light Field Fu-
sion(LLFF) dataset [30], and DTU dataset [22]. NeRF synthetic dataset contains
complex objects with 360◦ view. LLFF provides complex forward-facing scenes.
DTU consists of various objects placed on a table. We report metrics including
PSNR, structural similarity index (SSIM), and LPIPS perceptual metric [63].
We compare our method with the state-of-the-art neural radiance field meth-
ods DietNeRF [21], PixelNeRF [62], and DS-NeRF [9]. We train DietNeRF and
DS-NeRF for each scene since they are test-time optimization methods. As for
PixelNeRF, we fine-tune the model on each scene before evaluation for a fair
comparison.
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DS-NeRF [9] PixelNeRF [62] DietNeRF [21] SinNeRF Target Image

Fig. 4: Novel view synthesis results of different methods on DTU dataset.

4.3 View synthesis on NeRF Synthetic Dataset

For NeRF synthetic dataset, each scene is rendered via Blender. Both ground
truth rendered images of 100 camera poses and the original blender files are
provided. We randomly select a single view as the reference view and refer to its
surrounding views as unseen views. Then we use blender to render the ground
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PSNR↑ SSIM↑ LPIPS↓
Lego Hotdog Flower Room Lego Hotdog Flower Room Lego Hotdog Flower Room

DS-NeRF 16.62 14.16 16.92 17.44 0.77 0.67 0.41 0.65 0.1682 0.2956 0.3900 0.3986
DietNeRF 15.07 16.28 13.35 15.77 0.72 0.69 0.20 0.49 0.2063 0.2633 0.7526 0.7512
PixelNeRF 14.25 16.67 13.20 12.88 0.72 0.71 0.19 0.41 0.2171 0.2381 0.6378 0.7633
SinNeRF 20.97 19.78 17.20 18.85 0.82 0.77 0.41 0.67 0.0932 0.1700 0.3724 0.3796

Table 1: Quantitative evaluation of our method against state-of-the-art methods
on the NeRF synthetic dataset (Lego and Hotdog) and LLFF dataset (Flower
and Room).

PSNR↑ SSIM↑ LPIPS↓
DS-NeRF 12.17 0.41 0.6493
DietNeRF 12.84 0.44 0.6469
PixelNeRF 12.06 0.42 0.6471
SinNeRF 16.52 0.56 0.5250

Table 2: Quantitative evaluation of our method against state-of-the-art methods
on DTU dataset. We report average values across scenes.

truth of the unseen views by rotating the world-to-camera matrix. Specifically, we
generate 60 test set images by rotating the camera around the y-axis uniformly in
[−30◦, 30◦]. The quantitative results are shown in Tab. 1. Our method achieves
the best results both in pixel-wise error and perceptual quality.

We show the novel view synthesis results in the first two rows of Fig. 3. Each
row corresponds to a fixed camera pose, and each column contains the results
of a method. One can see that our method preserves the best geometry as well
as perceptual quality. DS-NeRF’s output contains a wrong geometry at the top
of the lego. This is because DS-NeRF only utilizes supervision on the reference
view and does not perform warping to other views. PixelNeRF’s results contain
“ghost” hotdogs since they do not explicitly regularize the geometry. Optimizing
on unseen views, DietNeRF produces appealing results, but unfortunately with
flaws in the novel view’s geometry (e.g., the objects are no longer in the center).
The results are also blurry since their CLIP embeddings are obtained at a low
resolution.

4.4 View synthesis on LLFF Dataset

For the local light field dataset, the images and the SfM results from colmap
are provided. We randomly select a single view as the reference view and use its
surrounding views as unseen views during training. For quantitative evaluation,
we render the other views in the dataset whose ground truth images are available.
We provide visual results in the last two rows of Fig. 3 and quantitative results
in Tab. 1. Our method generates the most visually-pleasing results, while other
methods tend to render obscure estimations on novel views. DS-NeRF shows
realistic geometry, but the rendered images are blurry. PixelNeRF and DietNeRF
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w/o Ladv w/o Lcls w/o Lgeo Full Model Target Image

Fig. 5: Novel view synthesis from different variants of our proposed model.

Methods PSNR↑ SSIM↑ LPIPS↓
w/o Lgeo 16.11 (-4.86) 0.74 (-0.08) 0.1919 (+0.0987)
w/o Lcls 18.20 (-2.77) 0.76 (-0.06) 0.1348 (+0.0146)
w/o Ladv 20.20 (-0.77) 0.79 (-0.03) 0.1306 (+0.0294)
Full Model 20.97 0.82 0.0932

Table 3: Ablation study on variants of pseudo labels. “w/o Ladv” refers
to the variant without the local texture guidance. “w/o Lcls” refers to the vari-
ant without global structure prior. “w/o Lgeo” refers to removing the geometry
pseudo labels and using depth supervision only on the reference view. Experi-
ments are conducted on Lego scene.

present good structures but wrong geometry due to their lack of local texture
guidance and geometry pseudo label.

4.5 View synthesis on DTU Dataset

For each scene in DTU dataset, 49 images and their fixed camera poses are
provided. We use camera 2 as the reference view because its images contain
most parts of the scene. We use 10 nearby cameras from the dataset as unseen
views during training. Since the ground truth of these nearby views are provided,
we render these views for quantitative evaluation. We provide visual results in
Fig. 4 and quantitative results in Tab. 2. Our method demonstrates the most
visually-pleasing results as well as the best quantitative performance. DS-NeRF
generates realistic geometry, but the results contain severe artifacts. PixelNeRF
and DietNeRF obtain a pleasing overall looking but suffer from wrong geometry.

4.6 Ablation Study

Variants of pseudo labels . In this section, we study the effectiveness of each
component of our proposed method. We evaluate on the lego scene and provide
the results in Fig. 5 and Tab. 3. Removing adversarial training leads to blurry
artifacts. This is because the Lcls is only beneficial when the extracted patch
has a receptive field large enough to cover the major structure of the image. The
variant without global structure prior contains wrong structure in novel views,
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PSNR↑ SSIM↑ LPIPS↓
style 15.49 (-5.48) 0.73 (-0.09) 0.2046 (+0.1114)
self-similarity 18.67 (-2.30) 0.81 (-0.01) 0.1075 (+0.0143)
content 19.20 (-1.76) 0.80 (-0.02) 0.1138 (+0.0206)
[CLS] (ours) 20.97 0.82 0.0932

Table 4: Ablation study on different choices of the global structure
prior. Here “content loss” refers to calculating L1 loss on the feature space of
pretrained VGG-16 network [43]. “style loss” refers to minimizing gram matrix
from the output of pre-trained VGG-16 network [43]. “self-similarity loss” [50]
refers to calculating the self-similarity of the keys in ViT’s self-attention layer.
The [CLS] denotes our proposed one, where we adopt the [CLS] token from pre-
trained DINO-ViT approaches. Lcls. Experiments are conducted on Lego scene.

which is due to the missing guidance on the overall semantic structure. Although
there are still geometry pseudo labels available, the projected depth information
only provides partial guidance and leaves the occluded regions unconstrained.
Finally, the variant without geometry pseudo labels suffers from wrong geometry.
There is only depth supervision of the reference view, and the unseen views are
not properly regularized.

Different choices of the global structure prior. We study different model
choices for our global structure prior in this section. The global structure prior is
designed to focus on the overall semantic consistency between the unseen views
and the reference view regardless of the pixel misalignment. Following this direc-
tion, we evaluate different architectures including both the ConvNets and ViTs.
As shown in Tab. 4, we evaluate different kinds of the global structure prior
by conducting experiments on the “lego” scene, including adopting the content,
style, and self-similarity losses from a pre-trained VGG network between unseen
views and reference view or minimizing the distance between the outputs of
[CLS] token from DINO-ViT [4] architecture. The quantitative results demon-
strate that DINO-ViT shows a stronger global structure prior, suggesting that
it is more robust to pixel misalignment.

5 Conclusions

We present SinNeRF, a framework to train a neural radiance field on a single
view from a complex scene. SinNeRF is based on a semi-supervised framework,
where geometry pseudo label and semantic pseudo label are synthesized to sta-
bilize the training process. Comprehensive experiments are conducted on com-
plex scene datasets, including NeRF synthetic dataset, Local Light Field Fusion
(LLFF) dataset, and DTU dataset, where SinNeRF outperforms the current
state-of-the-art NeRF frameworks. However, similar to most NeRF approaches,
one limitation of SinNeRF is the training efficiency issue, which could be one of
our future directions to explore further.
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