Skip to main content

Hierarchical Latent Structure for Multi-modal Vehicle Trajectory Forecasting

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13682))

Included in the following conference series:

  • 4247 Accesses

Abstract

Variational autoencoder (VAE) has widely been utilized for modeling data distributions because it is theoretically elegant, easy to train, and has nice manifold representations. However, when applied to image reconstruction and synthesis tasks, VAE shows the limitation that the generated sample tends to be blurry. We observe that a similar problem, in which the generated trajectory is located between adjacent lanes, often arises in VAE-based trajectory forecasting models. To mitigate this problem, we introduce a hierarchical latent structure into the VAE-based forecasting model. Based on the assumption that the trajectory distribution can be approximated as a mixture of simple distributions (or modes), the low-level latent variable is employed to model each mode of the mixture and the high-level latent variable is employed to represent the weights for the modes. To model each mode accurately, we condition the low-level latent variable using two lane-level context vectors computed in novel ways, one corresponds to vehicle-lane interaction and the other to vehicle-vehicle interaction. The context vectors are also used to model the weights via the proposed mode selection network. To evaluate our forecasting model, we use two large-scale real-world datasets. Experimental results show that our model is not only capable of generating clear multi-modal trajectory distributions but also outperforms the state-of-the-art (SOTA) models in terms of prediction accuracy. Our code is available at https://github.com/d1024choi/HLSTrajForecast.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. In: International Conference on Learning Representation (2015)

    Google Scholar 

  2. Bhattacharyya, A., Schiele, B., Fritz, M.: Accurate and diverse sampling of sequences based on a best-of-many sample objective. In: IEEE Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  3. Bowman, S.R., Vilnis, L., Vinyals, O., Dai, A.M., Jozefowicz, R., Bengio, S.: Generating sentences from a continuous space. arXiv:1511.06349 (2015)

  4. Caesar, H., et al.: nuScenes: a multimodal dataset for autonomous driving. In: IEEE Conference on Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  5. Casas, S., Gulino, C., Suo, S., Luo, K., Liao, R., Urtasun, R.: Implicit latent variable model for scene-consistent motion forecasting. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12368, pp. 624–641. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58592-1_37

    Chapter  Google Scholar 

  6. Casas, S., Gulino, C., Suo, S., Urtasun, R.: The importance of prior knowledge in precise multimodal prediction. In: International Conference on Intelligent Robots and Systems (2020)

    Google Scholar 

  7. Chang, M.F., et al.: Argoverse: 3D tracking and forecasting with rich maps. In: IEEE Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  8. Cui, A., Sadat, A., Casas, S., Liao, R., Urtasun, R.: Lookout: diverse multi-future prediction and planning for self-driving. In: International Conference on Computer Vision (2021)

    Google Scholar 

  9. Cui, H., et al.: Multimodal trajectory predictions for autonomous driving using deep convolutional networks. In: IEEE International Conference on Robotics and Automation (2019)

    Google Scholar 

  10. Fang, L., Jiang, Q., Shi, J., Zhou, B.: TPNet: trajectory proposal network for motion prediction. In: IEEE Conference on Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  11. Fu, H., Li, C., Liu, X., Gao, J., Celikyilmaz, A., Carin, L.: Cyclical annealing schedule: a simple approach to mitigating KL vanishing. In: NAACL (2019)

    Google Scholar 

  12. Gao, J., et al.: VectorNet: encoding HD maps and agent dynamics from vectorized representation. In: IEEE Conference on Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  13. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing System (2014)

    Google Scholar 

  14. Higgins, I., et al.: beta-VAE: learning basic visual concepts with a constrained variational framework. In: International Conference on Learning and Representation (2017)

    Google Scholar 

  15. Huang, H., Li, Z., He, R., Sun, Z., Tan, T.: IntroVAE: introspective variational autoencoders for photographic image synthesis. In: Advances in Neural Information Processing System (2018)

    Google Scholar 

  16. Kim, B., et al.: LaPred: lane-aware prediction of multi-modal future trajectories of dynamic agents. In: IEEE Conference on Computer Vision Pattern Recognition (2021)

    Google Scholar 

  17. Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow. In: Advances in Neural Information Processing System (2016)

    Google Scholar 

  18. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. arXiv:1312.6114 (2013)

  19. Larsen, A.B.L., Sonderby, S.K., Larochelle, H., Winther, O.: Autoencoding beyond pixels using a learned similarity metric. In: International Conference on Learning Representation (2016)

    Google Scholar 

  20. Lee, N., Choi, W., Vernaza, P., Choy, C.B., Torr, P.H.S., Chan, M.: Desire: Distant future prediction in dynamic scenes with interacting agents. In: IEEE Conference on Computer Vision on Pattern Recognition (2017)

    Google Scholar 

  21. Li, J., Yang, F., Ma, H., Malla, S., Tomizuka, M., Choi, C.: Rain: reinforced hybrid attention inference network for motion forecasting. In: Interantional Conference on Computer Vision (2021)

    Google Scholar 

  22. Liang, M., et al.: learning lane graph representations for motion forecasting. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 541–556. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_32

  23. Luo, C., Sun, L., Dabiri, D., Yuille, A.: Probabilistic multi-modal trajectory prediction with lane attention for autonomous vehicles. In: IEEE Conference on Intelligent Robots System (2020)

    Google Scholar 

  24. Messaoud, K., Deo, N., Trivedi, M.M., Nashashibi, F.: Trajectory prediction for autonomous driving based on multi-head attention with joint agent-map representation. arXiv:2005.02545 (2020)

  25. Narayanan, S., Moslemi, R., Pittaluga, F., Liu, B., Chandraker, M.: Divide-and-conquer for lane-aware diverse trajectory prediction. In: IEEE Conference on Computer Vision and Pattern Recognition (2021)

    Google Scholar 

  26. P-Minh, T., Grigore, E.C., Boulton, F.A., Beijbom, O., Wolff, E.M.: CoverNet: multimodal behavior prediction using trajectory sets. In: IEEE Conference on Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  27. Razavi, A., Oord, A., Poole, B., Vinyals, O.: Preventing posterior collapse with delta-VAEs. In: International Conference on Learning Representation (2019)

    Google Scholar 

  28. Rezende, D.J., Mohamad, S.: Variational inference with normalizing flows. In: International Conference on Machine Learning (2015)

    Google Scholar 

  29. Rhinehart, N., Kitani, K.M., Vernaza, P.: R2p2: a reparameterized pushforward policy for diverse, precise generative path forecasting. In: European Conference on Computer Vision (2018)

    Google Scholar 

  30. Salzmann, T., Ivanovic, B., Chakravarty, P., Pavone, M.: Trajectron++: dynamically-feasible trajectory forecasting with heterogeneous data. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12363, pp. 683–700. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58523-5_40

    Chapter  Google Scholar 

  31. Sohn, K., Lee, H., Yan, X.: Learning structured output representation using deep conditional generative models. In: Advances in Neural Information Processing System (2015)

    Google Scholar 

  32. Vahdat, A., Kautz, J.: NVAE: a deep hierarchical variational autoencoder. In: Advances in Neural Information Processing System (2020)

    Google Scholar 

  33. Yang, Z., Hu, Z., Salakhutdinov, R., B.-Kirkpatrick, T.: Improved variational autoencoders for text modeling using dilated convolutions. In: International Conference on Machine Learning (2017)

    Google Scholar 

  34. Yuan, Y., Weng, X., Ou, Y., Kitani, K.: AgentFormer: agent-aware transformers for socio-temporal multi-agent forecasting. arXiv:2103.14023 (2021)

  35. Zhao, S., Song, J., Ermon, S.: InfoVAE: information maximizing variational autoencoders. In: arXiv:1706.02262 (2017)

  36. Zhao, S., Song, J., Ermon, S.: Towards a deeper understanding of variational autoencoding models. In: arXiv:1702.08658v1 (2017)

Download references

Acknowledgment

This research work was supported by the Institute of Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Korean government (MSIP) (No. 2020-0-00002, Development of standard SW platform-based autonomous driving technology to solve social problems of mobility and safety for public transport-marginalized communities)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dooseop Choi .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 504 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Choi, D., Min, K. (2022). Hierarchical Latent Structure for Multi-modal Vehicle Trajectory Forecasting. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13682. Springer, Cham. https://doi.org/10.1007/978-3-031-20047-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20047-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20046-5

  • Online ISBN: 978-3-031-20047-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics