Skip to main content

Approximate Discrete Optimal Transport Plan with Auxiliary Measure Method

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13683))

Included in the following conference series:

  • 2011 Accesses

Abstract

Optimal transport (OT) between two measures plays an essential role in many fields, ranging from economy, biology to machine learning and artificial intelligence. Conventional discrete OT problem can be solved using linear programming (LP). Unfortunately, due to the large scale and the intrinsic non-linearity, achieving discrete OT plan with adequate accuracy and efficiency is challenging. Generally speaking, the OT plan is highly sparse. This work proposes an auxiliary measure method to use the semi-discrete OT maps to estimate the sparsity of the discrete OT plan with squared Euclidean cost. Although obtaining the accurate semi-discrete OT maps is difficult, we can find the sparsity information through computing the approximate semi-discrete OT maps by convex optimization. The sparsity information can be further incorporated into the downstream LP optimization to greatly reduce the computational complexity and improve the accuracy. We also give a theoretic error bound between the estimated transport plan and the OT plan in terms of Wasserstein distance. Experiments on both synthetic data and color transfer tasks demonstrate the accuracy and efficiency of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Altschuler, J., Niles-Weed, J., Rigollet, P.: Near-linear time approximation algorithms for optimal transport via sinkhorn iteration. In: Advances in Neural Information Processing Systems 30 (2017)

    Google Scholar 

  2. An, D., Guo, Y., Lei, N., Luo, Z., Yau, S.T., Gu, X.: Ae-ot: A new generative model based on extended semi-discrete optimal transport. In: International Conference on Learning Representations (2020)

    Google Scholar 

  3. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: ICML, pp. 214–223 (2017)

    Google Scholar 

  4. Blondel, M., Seguy, V., Rolet, A.: Smooth and sparse optimal transport. In: Proceedings of the Twenty-First International Conference on Artificial Intelligence and Statistics, pp. 880–889 (2018)

    Google Scholar 

  5. Bonneel, N., Rabin, J., Peyre, G., Pfister, H.: Sliced and radon wasserstein barycenters of measures. Journal of Mathematical Imaging and Vision (2014)

    Google Scholar 

  6. Brenier, Y.: Polar factorization and monotone rearrangement of vector-valued functions. Comm. Pure Appl. Math. 44(4), 375–417 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bubeck, S.: Convex Optimization: Algorithms and Complexity, vol. 8. Foundations and Trends in Machine Learning (2015)

    Google Scholar 

  8. Chakrabarty, D., Khanna, S.: Better and simpler error analysis of the sinkhorn-knopp algorithm for matrix scaling. Math. Program. 188(1), 395–407 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  9. Courty, N., Flamary, R., Tuia, D., Rakotomamonjy, A.: Optimal transport for domain adaptation. IEEE Trans. Pattern Anal. Mach. Intell. 39(9), 1853–1865 (2017)

    Article  Google Scholar 

  10. Cuturi, M.: Sinkhorn distances: Lightspeed computation of optimal transportation distances. In: International Conference on Neural Information Processing Systems, vol. 26, pp. 2292–2300 (2013)

    Google Scholar 

  11. Dvurechensky, P., Gasnikov, A., Kroshnin, A.: Computational optimal transport: Complexity by accelerated gradient descent is better than by Sinkhorn’s algorithm. In: International Conference on Machine Learning, pp. 1367–1376 (2018)

    Google Scholar 

  12. Galichon, A.: Optimal Transport Methods in Economics. Princeton University Press (2016)

    Google Scholar 

  13. Genevay, A., Cuturi, M., Peyré, G., Bach, F.: Stochastic optimization for large-scale optimal transport. In: Advances in Neural Information Processing Systems, pp. 3440–3448 (2016)

    Google Scholar 

  14. Glimm, T., Oliker, V.: Optical design of single reflector systems and the Monge-Kantorovich mass transfer problem. J. Math. Sci. 117(3), 4096–4108 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gu, D.X., Luo, F., Sun, J., Yau, S.T.: Variational principles for minkowski type problems, discrete optimal transport, and discrete monge-ampère equations. Asian Journal of Mathematics (2016)

    Google Scholar 

  16. Jordan, R., Kinderlehrer, D., Otto, F.: The variational formulation of the fokker-planck equation. SIAM J. Math. Anal. 29(1), 1–17 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  18. Kitagawa, J., Mérigot, Q., Thibert, B.: Convergence of a newton algorithm for semi-discrete optimal transport. J. Eur. Math. Soc. 21(9), 2603–2651 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kolouri, S., Nadjahi, K., Simsekli, U., Badeau, R., Rohde, G.: Generalized sliced wasserstein distances. In: Advances in Neural Information Processing Systems 32 (2019)

    Google Scholar 

  20. Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Proceedings of the 32nd International Conference on Machine Learning. pp. 957–966 (2015)

    Google Scholar 

  21. Lei, N., Su, K., Cui, L., Yau, S.T., Gu, D.X.: A geometric view of optimal transportation and generative mode. Computer Aided Geometric Design 68, 1–21 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lin, T., Ho, N., Jordan, M.I.: On efficient optimal transport: An analysis of greedy and accelerated mirror descent algorithms. In: International Conference on Machine Learning. pp. 3982–3991 (2019)

    Google Scholar 

  23. Meng, C., Ke, Y., Zhang, J., Zhang, M., Zhong, W., Ma, P.: Large-scale optimal transport map estimation using projection pursuit. In: Advances in Neural Information Processing Systems 32 (2019)

    Google Scholar 

  24. Nguyen, X.: Convergence of latent mixing measures in finite and infinite mixture models. Ann. Statist 41, 370–400 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Peyré, G., Cuturi, M.: Computational Optimal Transport. arXiv:1803.00567 (2018)

  26. Pitie, F., Kokaram, A.C., Dahyot, R.: Automated colour grading using colour distribution transfer. Computer Vision and Image Understanding (2007)

    Google Scholar 

  27. Schiebinger, G., Shu, J., Tabaka, M., Cleary, B., Subramanian, V., Solomon, A., Gould, J., Liu, S., Lin, S., Berube, P., Lee, L., Chen, J., Brumbaugh, J., Rigollet, P., Hochedlinger, K., Jaenisch, R., Regev, A., Lander, E.: Optimal-transport analysis of single-cell gene expression identifies developmental trajectories in reprogramming. Cell 176(4), 928–943 (2019)

    Article  Google Scholar 

  28. Schmitzer, B.: Stabilized sparse scaling algorithms for entropy regularized transport problems. SIAM J. Sci. Comput. 41(3), A1443–A1481 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  29. Seguy, V., Damodaran, B.B., Flamary, R., Courty, N., Rolet, A., Blondel, M.: Large-scale optimal transport and mapping estimation. Stat 1050, 26 (2018)

    Google Scholar 

  30. Taskesen, B., Shafieezadeh-Abadeh, S., Kuhn, D.: Semi-discrete optimal transport: Hardness, regularization and numerical solution. arXiv preprint arXiv:2103.06263 (2021)

  31. Tolstikhin, I., Bousquet, O., Gelly, S., Schoelkopf, B.: Wasserstein auto-encoders. In: ICLR (2018)

    Google Scholar 

  32. Villani, C.: Optimal transport: old and new, vol. 338. Springer Science & Business Media (2008)

    Google Scholar 

  33. Yurochkin, M., Claici, S., Chien, E., Mirzazadeh, F., Solomon, J.M.: Hierarchical optimal transport for document representation. In: Advances in Neural Information Processing Systems 32 (2019)

    Google Scholar 

Download references

Acknowledgement

Lei was supported by the National Natural Science Foundation of China No. 61936002 and the National Key R &D Program of China 2021YFA1003003. Gu is partially supported by NSF 2115095, NSF 1762287, NIH 92025 and NIH R01LM012434.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Na Lei .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1843 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

An, D., Lei, N., Gu, X. (2022). Approximate Discrete Optimal Transport Plan with Auxiliary Measure Method. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13683. Springer, Cham. https://doi.org/10.1007/978-3-031-20050-2_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20050-2_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20049-6

  • Online ISBN: 978-3-031-20050-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics