Skip to main content

Dual-Domain Self-supervised Learning and Model Adaption for Deep Compressive Imaging

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13690))

Included in the following conference series:

Abstract

Deep learning has been one promising tool for compressive imaging whose task is to reconstruct latent images from their compressive measurements. Aiming at addressing the limitations of supervised deep learning-based methods caused by their prerequisite on the ground truths of latent images, this paper proposes an unsupervised approach that trains a deep image reconstruction model using only a set of compressive measurements. The training is self-supervised in the domain of measurements and the domain of images, using a double-head noise-injected loss with a sign-flipping-based noise generator. In addition, the proposed scheme can also be used for efficiently adapting a trained model to a test sample for further improvement, with much less overhead than existing internal learning methods. Extensive experiments show that the proposed approach provides noticeable performance gain over existing unsupervised methods and competes well against the supervised ones.

Yuhui Quan is also with Pazhou Lab, Guangzhou 510335, China. He would like to thank the support in part by National Natural Science Foundation of China under Grant 61872151 and in part by Natural Science Foundation of Guangdong Province under Grant 2022A1515011755.

Hui Ji would like to thank the support in part by Singapore MOE AcRF under Grant R-146-000-315-114.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, D., Davies, M.E.: Deep decomposition learning for inverse imaging problems. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12373, pp. 510–526. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58604-1_31

    Chapter  Google Scholar 

  2. Chen, D., Tachella, J., Davies, M.E.: Equivariant imaging: learning beyond the range space. In: Proceedings of International Conference on Computer Vision (2021)

    Google Scholar 

  3. Chen, D., Tachella, J., Davies, M.E.: Robust equivariant imaging: a fully unsupervised framework for learning to image from noisy and partial measurements. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (2022)

    Google Scholar 

  4. Chen, J., Sun, Y., Liu, Q., Huang, R.: Learning memory augmented cascading network for compressed sensing of images. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12367, pp. 513–529. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58542-6_31

    Chapter  Google Scholar 

  5. Clark, K., et al.: The cancer imaging archive (TCIA): maintaining and operating a public information repository. J. Digit. Imaging 26(6), 1045–1057 (2013)

    Article  Google Scholar 

  6. Cole, E.K., Pauly, J.M., Vasanawala, S.S., Ong, F.: Unsupervised MRI reconstruction with generative adversarial networks. arXiv preprint arXiv:2008.13065 (2020)

  7. Diamond, S., Sitzmann, V., Heide, F., Wetzstein, G.: Unrolled optimization with deep priors. arXiv preprint arXiv:1705.08041 (2017)

  8. Ding, Q., Chen, G., Zhang, X., Huang, Q., Ji, H., Gao, H.: Low-dose CT with deep learning regularization via proximal forward-backward splitting. Phys. Med. Biol. 65(12), 125009 (2020)

    Article  Google Scholar 

  9. Dong, W., Shi, G., Li, X., Ma, Y., Huang, F.: Compressive sensing via nonlocal low-rank regularization. IEEE Trans. Image Process. 23(8), 3618–3632 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Eldar, Y.C.: Generalized sure for exponential families: applications to regularization. IEEE Trans. Signal Process. 57(2), 471–481 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Feng, C.M., Yang, Z., Chen, G., Xu, Y., Shao, L.: Dual-octave convolution for accelerated parallel MR image reconstruction. In: Proceedings of AAAI Conference on Artificial Intelligence (2021)

    Google Scholar 

  12. Jalal, A., Karmalkar, S., Dimakis, A.G., Price, E.: Instance-optimal compressed sensing via posterior sampling. In: Proceedings of International Conference on Machine Learning (2021)

    Google Scholar 

  13. Jin, K.H., McCann, M.T., Froustey, E., Unser, M.A.: Deep convolutional neural network for inverse problems in imaging. IEEE Trans. Image Process. 26, 4509–4522 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kabkab, M., Samangouei, P., Chellappa, R.: Task-aware compressed sensing with generative adversarial networks. In: Proceedings of AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  15. Kadkhodaie, Z., Simoncelli, E.: Stochastic solutions for linear inverse problems using the prior implicit in a denoiser. In: Proceedings of Advances in Neural Information Processing Systems, vol. 34 (2021)

    Google Scholar 

  16. Kulkarni, K., Lohit, S., Turaga, P., Kerviche, R., Ashok, A.: ReconNet: non-iterative reconstruction of images from compressively sensed measurements. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 449–458 (2016)

    Google Scholar 

  17. Liu, J., Kuang, T., Zhang, X.: Image reconstruction by splitting deep learning regularization from iterative inversion. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 224–231. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_26

    Chapter  Google Scholar 

  18. Lustig, M., Donoho, D., Pauly, J.M.: Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn. Reson. Med. 58(6), 1182–1195 (2007)

    Article  Google Scholar 

  19. Mardani, M., et al.: Neural proximal gradient descent for compressive imaging. In: Advances in Neural Information Processing Systems, vol. 31 (2018)

    Google Scholar 

  20. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings of International Conference on Computer Vision, IEEE, vol. 2, pp. 416–423. (2001)

    Google Scholar 

  21. Metzler, C., Mousavi, A., Heckel, R., Baraniuk, R.: Unsupervised learning with stein’s unbiased risk estimator. arXiv preprint arXiv:1805.10531 (2018)

  22. Metzler, C.A., Maleki, A., Baraniuk, R.: BM3D-AMP: a new image recovery algorithm based on BM3D denoising. In: Proceedings of International Conference on Image Processing, pp. 3116–3120. IEEE (2015)

    Google Scholar 

  23. Metzler, C.A., Maleki, A., Baraniuk, R.: From denoising to compressed sensing. IEEE Trans. Inf. Theory 62(9), 5117–5144 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Metzler, C.A., Mousavi, A., Baraniuk, R.G.: Learned D-AMP: principled neural network based compressive image recovery. In: Proceedings of Conference on Neural Information Processing Systems (2017)

    Google Scholar 

  25. Pang, T., Quan, Y., Ji, H.: Self-supervised Bayesian deep learning for image recovery with applications to compressive sensing. In: Proceedings of European Conference on Computer Vision (2020)

    Google Scholar 

  26. Pang, T., Zheng, H., Quan, Y., Ji, H.: Recorrupted-to-recorrupted: unsupervised deep learning for image denoising. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (2021)

    Google Scholar 

  27. Quan, Y., Chen, M., Pang, T., Ji, H.: Self2self with dropout: learning self-supervised denoising from single image. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 1890–1898 (2020)

    Google Scholar 

  28. Quan, Y., Qin, X., Chen, M., Huang, Y.: High-quality self-supervised snapshot hyperspectral imaging. In: IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, pp. 1526–1530. (2022)

    Google Scholar 

  29. Shi, W., Jiang, F., Liu, S., Zhao, D.: Scalable convolutional neural network for image compressed sensing. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 12290–12299 (2019)

    Google Scholar 

  30. Shi, W., Jiang, F., Liu, S., Zhao, D.: Image compressed sensing using convolutional neural network. IEEE Trans. Image Process. 29, 375–388 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sun, Y., Chen, J., Liu, Q., Liu, B., Guo, G.: Dual-path attention network for compressed sensing image reconstruction. IEEE Trans. Image Process. 29, 9482–9495 (2020)

    Article  MATH  Google Scholar 

  32. Ulyanov, D., Vedaldi, A., Lempitsky, V.: Deep image prior. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 9446–9454 (2018)

    Google Scholar 

  33. Wang, W., Li, J., Ji, H.: Self-supervised deep image restoration via adaptive stochastic gradient langevin dynamics. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1989–1998 (2022)

    Google Scholar 

  34. Wei, K., Aviles-Rivero, A., Liang, J., Fu, Y., Schönlieb, C.B., Huang, H.: Tuning-free plug-and-play proximal algorithm for inverse imaging problems. In: Proceedings of International Conference on Machine Learning. PMLR, pp. 10158–10169 (2020)

    Google Scholar 

  35. Xia, Z., Chakrabarti, A.: Training image estimators without image ground-truth. In: Proceedings of Conference on Neural Information Processing Systems (2019)

    Google Scholar 

  36. Xiang, J., Dong, Y., Yang, Y.: FISTA-Net: learning a fast iterative shrinkage thresholding network for inverse problems in imaging. IEEE Trans. Med. Imaging 40(5), 1329–1339 (2021)

    Article  Google Scholar 

  37. Xin, B., Wang, Y., Gao, W., Wipf, D.: Maximal sparsity with deep networks? In: Proceedings of Conference on Neural Information Processing Systems (2016)

    Google Scholar 

  38. Xu, K., Zhang, Z., Ren, F.: LAPRAN: a scalable Laplacian pyramid reconstructive adversarial network for flexible compressive sensing reconstruction. In: Proceedings of European Conference on Computer Vision, pp. 485–500 (2018)

    Google Scholar 

  39. Yang, Y., Sun, J., Li, H., Xu, Z.: ADMM-CSNet: a deep learning approach for image compressive sensing. IEEE Trans. Pattern Anal. Mach. Intell. 42(3), 521–538 (2019)

    Article  Google Scholar 

  40. You, D., Zhang, J., Xie, J., Chen, B., Ma, S.: Coast: controllable arbitrary-sampling network for compressive sensing. IEEE Trans. Image Process. 30, 6066–6080 (2021)

    Article  MathSciNet  Google Scholar 

  41. Zalbagi Darestani, M., Heckel, R.: Accelerated MRI with un-trained neural networks. In: IEEE Transactions on Computational Imaging. vol. 7, pp. 724–733 (2021)

    Google Scholar 

  42. Zhang, J., Ghanem, B.: ISTA-Net: interpretable optimization-inspired deep network for image compressive sensing. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 1828–1837 (2018)

    Google Scholar 

  43. Zhang, Z., Liu, Y., Liu, J., Wen, F., Zhu, C.: AMP-Net: denoising-based deep unfolding for compressive image sensing. IEEE Trans. Image Process. 30, 1487–1500 (2021)

    Article  MathSciNet  Google Scholar 

  44. Zheng, H., Fang, F., Zhang, G.: Cascaded dilated dense network with two-step data consistency for MRI reconstruction. In: Proceedings of Conference on Neural Information Processing Systems (2019)

    Google Scholar 

  45. Zhou, B., Zhou, S.K.: DuDoRNet: learning a dual-domain recurrent network for fast MRI reconstruction with deep T1 prior. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 4273–4282 (2020)

    Google Scholar 

  46. Zhussip, M., Soltanayev, S., Chun, S.: Training deep learning based image denoisers from undersampled measurements without ground truth and without image prior. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 10255–10264 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinran Qin .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 7645 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Quan, Y., Qin, X., Pang, T., Ji, H. (2022). Dual-Domain Self-supervised Learning and Model Adaption for Deep Compressive Imaging. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13690. Springer, Cham. https://doi.org/10.1007/978-3-031-20056-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20056-4_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20055-7

  • Online ISBN: 978-3-031-20056-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics