Abstract
Embodied Reference Understanding studies the reference understanding in an embodied fashion, where a receiver requires to locate a target object referred to by both language and gesture of the sender in a shared physical environment. Its main challenge lies in how to make the receiver with the egocentric view access spatial and visual information relative to the sender to judge how objects are oriented around and seen from the sender, i.e., spatial and visual perspective-taking. In this paper, we propose a REasoning from your Perspective (REP) method to tackle the challenge by modeling relations between the receiver and the sender as well as the sender and the objects via the proposed novel view rotation and relation reasoning. Specifically, view rotation first rotates the receiver to the position of the sender by constructing an embodied 3D coordinate system with the position of the sender as the origin. Then, it changes the orientation of the receiver to the orientation of the sender by encoding the body orientation and gesture of the sender. Relation reasoning models both the nonverbal and verbal relations between the sender and the objects by multi-modal cooperative reasoning in gesture, language, visual content, and spatial position. Experiment results demonstrate the effectiveness of REP, which consistently surpasses all existing state-of-the-art algorithms by a large margin, i.e., +\(5.22\%\) absolute accuracy in terms of Prec@0.5 on YouRefIt. Code is available (https://github.com/ChengShiest/REP-ERU).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agarap, A.F.: Deep learning using rectified linear units (ReLU). arXiv preprint arXiv:1803.08375 (2018)
Banerjee, P., Gokhale, T., Yang, Y., Baral, C.: Weakly supervised relative spatial reasoning for visual question answering. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 1908–1918 (2021)
Batson, C.D., Early, S., Salvarani, G.: Perspective taking: imagining how another feels versus imaging how you would feel. Pers. Soc. Psychol. Bull. 23, 751–758 (1997)
Bhat, S.F., Alhashim, I., Wonka, P.: Adabins: depth estimation using adaptive bins. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4009–4018 (2021)
Cao, Z., Hidalgo, G., Simon, T., Wei, S.E., Sheikh, Y.: OpenPose: realtime multi-person 2D pose estimation using part affinity fields. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 172–186 (2019)
Chen, X., Ma, L., Chen, J., Jie, Z., Liu, W., Luo, J.: Real-time referring expression comprehension by single-stage grounding network. arXiv preprint arXiv:1812.03426 (2018)
Chen, Y., et al.: Yourefit: embodied reference understanding with language and gesture. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 1385–1395 (2021)
Clinton, J.A., Magliano, J.P., Skowronski, J.J.: Gaining perspective on spatial perspective taking. J. Cogn. Psychol. 85–97 (2018)
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)
Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)
Eigen, D., Fergus, R.: Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 2650–2658 (2015)
Eigen, D., Puhrsch, C., Fergus, R.: Depth map prediction from a single image using a multi-scale deep network. In: Advances in Neural Information Processing Systems (2014)
Fan, L., Qiu, S., Zheng, Z., Gao, T., Zhu, S.C., Zhu, Y.: Learning triadic belief dynamics in nonverbal communication from videos. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7312–7321 (2021)
Fu, H., Gong, M., Wang, C., Batmanghelich, K., Tao, D.: Deep ordinal regression network for monocular depth estimation. In: Proceedings of the IEEE/CVF conference on Computer Vision and Pattern Recognition (CVPR), pp. 2002–2011 (2018)
Hu, R., Rohrbach, M., Andreas, J., Darrell, T., Saenko, K.: Modeling relationships in referential expressions with compositional modular networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1115–1124 (2017)
Hudson, D.A., Manning, C.D.: Compositional attention networks for machine reasoning. In: International Conference on Learning Representations (2018)
Johnson, J., Hariharan, B., Van Der Maaten, L., Fei-Fei, L., Lawrence Zitnick, C., Girshick, R.: CLEVR: a diagnostic dataset for compositional language and elementary visual reasoning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2901–2910 (2017)
Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: International Conference on Learning Representations (2016)
Kroner, A., Senden, M., Driessens, K., Goebel, R.: Contextual encoder-decoder network for visual saliency prediction. Neural Netw. 129, 261–270 (2020)
Ladicky, L., Shi, J., Pollefeys, M.: Pulling things out of perspective. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 89–96 (2014)
Liao, Y., et al.: A real-time cross-modality correlation filtering method for referring expression comprehension. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10880–10889 (2020)
Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Liu, X., Wang, Z., Shao, J., Wang, X., Li, H.: Improving referring expression grounding with cross-modal attention-guided erasing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1950–1959 (2019)
Luo, G., et al.: Multi-task collaborative network for joint referring expression comprehension and segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10034–10043 (2020)
Mao, J., Gan, C., Kohli, P., Tenenbaum, J.B., Wu, J.: The neuro-symbolic concept learner: interpreting scenes, words, and sentences from natural supervision. In: International Conference on Learning Representations (2019)
Mao, J., Huang, J., Toshev, A., Camburu, O., Yuille, A.L., Murphy, K.: Generation and comprehension of unambiguous object descriptions. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11–20 (2016)
Mertan, A., Duff, D.J., Unal, G.: Single image depth estimation: an overview. arXiv preprint arXiv:2104.06456 (2021)
Nagaraja, V.K., Morariu, V.I., Davis, L.S.: Modeling context between objects for referring expression understanding. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 792–807. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_48
Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, pp. 8026–8037 (2019)
Perez, E., Strub, F., De Vries, H., Dumoulin, V., Courville, A.: Film: visual reasoning with a general conditioning layer. In: Proceedings of the AAAI Conference on Artificial Intelligence (2018)
Qi, X., Liao, R., Liu, Z., Urtasun, R., Jia, J.: Geonet: geometric neural network for joint depth and surface normal estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 283–291 (2018)
Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O.R., Jagersand, M.: \(\rm {U^2}\)-net: going deeper with nested u-structure for salient object detection. Pattern Recognit. 106, 107404 (2020)
Qiu, S., Liu, H., Zhang, Z., Zhu, Y., Zhu, S.C.: Human-robot interaction in a shared augmented reality workspace. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2020)
Redmon, J., Farhadi, A.: Yolov3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)
Sadhu, A., Chen, K., Nevatia, R.: Zero-shot grounding of objects from natural language queries. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 4694–4703 (2019)
Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support inference from RGBD images. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7576, pp. 746–760. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33715-4_54
Stacy, S., Zhao, Q., Zhao, M., Kleiman-Weiner, M., Gao, T.: Intuitive signaling through an “imagined we”. In: Proceedings of the Annual Meeting of the Cognitive Science Society (CogSci) (2020)
Surtees, A., Apperly, I., Samson, D.: Similarities and differences in visual and spatial perspective-taking processes. Cognition 129, 426–438 (2013)
Tieleman, T., Hinton, G., et al.: Lecture 6.5-rmsprop: divide the gradient by a running average of its recent magnitude. COURSERA Neural Netw. Mach. Learn. 4, 26–31 (2012)
Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems (2017)
Wang, P., Wu, Q., Cao, J., Shen, C., Gao, L., Hengel, A.V.D.: Neighbourhood watch: referring expression comprehension via language-guided graph attention networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1960–1968 (2019)
Wu, Q., Wu, C.J., Zhu, Y., Joo, J.: Communicative learning with natural gestures for embodied navigation agents with human-in-the-scene. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2021)
Xu, D., Ouyang, W., Wang, X., Sebe, N.: PAD-Net: multi-tasks guided prediction-and-distillation network for simultaneous depth estimation and scene parsing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 675–684 (2018)
Yang, S., Li, G., Yu, Y.: Cross-modal relationship inference for grounding referring expressions. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4145–4154 (2019)
Yang, S., Li, G., Yu, Y.: Dynamic graph attention for referring expression comprehension. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4644–4653 (2019)
Yang, S., Li, G., Yu, Y.: Graph-structured referring expression reasoning in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9952–9961 (2020)
Yang, S., Li, G., Yu, Y.: Propagating over phrase relations for one-stage visual grounding. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12364, pp. 589–605. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58529-7_35
Yang, S., Li, G., Yu, Y.: Relationship-embedded representation learning for grounding referring expressions. IEEE Trans. Pattern Anal. Mach. Intell. 43(8), 2765–2779 (2020)
Yang, Z., Chen, T., Wang, L., Luo, J.: Improving one-stage visual grounding by recursive sub-query construction. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12359, pp. 387–404. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58568-6_23
Yang, Z., Gong, B., Wang, L., Huang, W., Yu, D., Luo, J.: A fast and accurate one-stage approach to visual grounding. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 4683–4693 (2019)
Yi, K., Wu, J., Gan, C., Torralba, A., Kohli, P., Tenenbaum, J.: Neural-symbolic VQA: disentangling reasoning from vision and language understanding. In: Advances in Neural Information Processing Systems (2018)
Yu, L., et al.: Mattnet: modular attention network for referring expression comprehension. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1307–1315 (2018)
Yu, L., Poirson, P., Yang, S., Berg, A.C., Berg, T.L.: Modeling context in referring expressions. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 69–85. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_5
Zhang, H., Niu, Y., Chang, S.F.: Grounding referring expressions in images by variational context. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4158–4166 (2018)
Acknowledgment
This work is supported by Shanghai Pujiang Program (No. 21PJ1410900).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Shi, C., Yang, S. (2022). Spatial and Visual Perspective-Taking via View Rotation and Relation Reasoning for Embodied Reference Understanding. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13696. Springer, Cham. https://doi.org/10.1007/978-3-031-20059-5_12
Download citation
DOI: https://doi.org/10.1007/978-3-031-20059-5_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20058-8
Online ISBN: 978-3-031-20059-5
eBook Packages: Computer ScienceComputer Science (R0)