Skip to main content

ASSISTER: Assistive Navigation via Conditional Instruction Generation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13696))

Included in the following conference series:

Abstract

We introduce a novel vision-and-language navigation (VLN) task of learning to provide real-time guidance to a blind follower situated in complex dynamic navigation scenarios. Towards exploring real-time information needs and fundamental challenges in our novel modeling task, we first collect a multi-modal real-world benchmark with in-situ Orientation and Mobility (O &M) instructional guidance. Subsequently, we leverage the real-world study to inform the design of a larger-scale simulation benchmark, thus enabling comprehensive analysis of limitations in current VLN models. Motivated by how sighted O &M guides seamlessly and safely support the awareness of individuals with visual impairments when collaborating on navigation tasks, we present ASSISTER, an imitation-learned agent that can embody such effective guidance. The proposed assistive VLN agent is conditioned on navigational goals and commands for generating instructional sentences that are coherent with the surrounding visual scene, while also carefully accounting for the immediate assistive navigation task. Altogether, our introduced evaluation and training framework takes a step towards scalable development of the next generation of seamless, human-like assistive agents.

Z. Huang and Z. Shangguan—Equally contributed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmetovic, D., Gleason, C., Ruan, C., Kitani, K., Takagi, H., Asakawa, C.: NavCog: a navigational cognitive assistant for the blind. In: MobileHCI (2016)

    Google Scholar 

  2. Ahmetovic, D., Guerreiro, J., Ohn-Bar, E., Kitani, K.M., Asakawa, C.: Impact of expertise on interaction preferences for navigation assistance of visually impaired individuals. In: W4A (2019)

    Google Scholar 

  3. Ahmetovic, D., et al.: Achieving practical and accurate indoor navigation for people with visual impairments. In: W4A (2017)

    Google Scholar 

  4. Aira: aira app. https://aira.io/

  5. Anderson, P., et al.: On evaluation of embodied navigation agents. arXiv (2018)

    Google Scholar 

  6. Anderson, P., et al.: Vision-and-language navigation: interpreting visually-grounded navigation instructions in real environments. In: CVPR (2018)

    Google Scholar 

  7. Antol, S., Agrawal, A., Lu, J., Mitchell, M., Batra, D., Zitnick, C.L., Parikh, D.: VQA: visual question answering. In: ICCV (2015)

    Google Scholar 

  8. Arditi, A., Tian, Y.: User interface preferences in the design of a camera-based navigation and wayfinding aid. J. Vis. Impairment Blindness 107(2), 118–129 (2013)

    Article  Google Scholar 

  9. Banovic, N., Franz, R.L., Truong, K.N., Mankoff, J., Dey, A.K.: Uncovering information needs for independent spatial learning for users who are visually impaired. In: ASSETS (2013)

    Google Scholar 

  10. Bigham, J.P., et al.: VizWiz: nearly real-time answers to visual questions. In: UIST (2010)

    Google Scholar 

  11. Blukis, V., Paxton, C., Fox, D., Garg, A., Artzi, Y.: A persistent spatial semantic representation for high-level natural language instruction execution. arXiv (2021)

    Google Scholar 

  12. Brady, E.L., Sato, D., Ruan, C., Takagi, H., Asakawa, C.: Exploring interface design for independent navigation by people with visual impairments. In: ASSETS (2015)

    Google Scholar 

  13. Chen, H.,et al.: Touchdown: natural language navigation and spatial reasoning in visual street environments. In: CVPR (2019)

    Google Scholar 

  14. Codevilla, F., Müller, M., López, A., Koltun, V., Dosovitskiy, A.: End-to-end driving via conditional imitation learning. In: ICRA (2018)

    Google Scholar 

  15. Codevilla, F., Santana, E., López, A.M., Gaidon, A.: Exploring the limitations of behavior cloning for autonomous driving. In: ICCV (2019)

    Google Scholar 

  16. Daniele, A.F., Bansal, M., Walter, M.R.: Navigational instruction generation as inverse reinforcement learning with neural machine translation. In: HRI (2017)

    Google Scholar 

  17. Das, A., et al.: Visual dialog. In: CVPR (2017)

    Google Scholar 

  18. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: ACL (2018)

    Google Scholar 

  19. Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: CARLA: an open urban driving simulator. In: CoRL (2017)

    Google Scholar 

  20. Duvallet, F., Kollar, T., Stentz, A.: Imitation learning for natural language direction following through unknown environments. In: ICRA (2013)

    Google Scholar 

  21. Duvallet, F., et al.: Inferring maps and behaviors from natural language instructions. In: Hsieh, M.A., Khatib, O., Kumar, V. (eds.) Experimental Robotics. STAR, vol. 109, pp. 373–388. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-23778-7_25

    Chapter  Google Scholar 

  22. Easley, W., et al.: Let’s get lost: exploring social norms in predominately blind environments. In: CHI (2016)

    Google Scholar 

  23. Erickson, Z., Gangaram, V., Kapusta, A., Liu, C.K., Kemp, C.C.: Assistive gym: a physics simulation framework for assistive robotics. ICRA (2020)

    Google Scholar 

  24. Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: a survey. Interact. Comput. 25(1), 21–33 (2013)

    Google Scholar 

  25. Fried, D., et al.: Speaker-follower models for vision-and-language navigation. In: NeurIPS (2018)

    Google Scholar 

  26. Fuentes-Pacheco, J., Ruiz-Ascencio, J., Rendón-Mancha, J.M.: Visual simultaneous localization and mapping: a survey. Artif. Intell. Rev. 43(1), 55–81 (2015). https://doi.org/10.1007/s10462-012-9365-8

    Article  Google Scholar 

  27. Geruschat, D.R., Turano, K.A., Stahl, J.W.: Traditional measures of mobility performance and retinitis pigmentosa. Optom. Vis. Sci. 75(7), 525–537 (1998)

    Article  Google Scholar 

  28. Giudice, N.A., Legge, G.E.: Blind navigation and the role of technology. In: The Engineering Handbook of Smart Technology for Aging, Disability, and Independence (2008)

    Google Scholar 

  29. Google: Google speech-to-text. https://cloud.google.com/speech-to-text

  30. Granquist, C., Sun, S.Y., Montezuma, S.R., Tran, T.M., Gage, R., Legge, G.E.: Evaluation and comparison of artificial intelligence vision aids: orcam myeye 1 and seeing AI. J. Vis. Impairment Blindness 115(4), 277–285 (2021)

    Article  Google Scholar 

  31. Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. In: CHI (2019)

    Google Scholar 

  32. Guerreiro, J., Ohn-Bar, E., Ahmetovic, D., Kitani, K., Asakawa, C.: How context and user behavior affect indoor navigation assistance for blind people. In: W4A (2018)

    Google Scholar 

  33. Guhur, P.L., Tapaswi, M., Chen, S., Laptev, I., Schmid, C.: Airbert: In-domain pretraining for vision-and-language navigation. In: ICCV (2021)

    Google Scholar 

  34. Gupta, A., Johnson, J., Fei-Fei, L., Savarese, S., Alahi, A.: Social GAN: socially acceptable trajectories with generative adversarial networks. In: CVPR (2018)

    Google Scholar 

  35. Gurari, D., et al.: VizWiz-Priv: A dataset for recognizing the presence and purpose of private visual information in images taken by blind people. In: CVPR (2019)

    Google Scholar 

  36. Gurari, D., et al.: VizWiz grand challenge: answering visual questions from blind people. In: CVPR (2018)

    Google Scholar 

  37. Hahn, M., Krantz, J., Batra, D., Parikh, D., Rehg, J.M., Lee, S., Anderson, P.: Where are you? localization from embodied dialog (2020)

    Google Scholar 

  38. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)

    Article  Google Scholar 

  39. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  40. Hu, Z., Pan, J., Fan, T., Yang, R., Manocha, D.: Safe navigation with human instructions in complex scenes. IEEE Robot. Autom. Lett. 4(2), 753–760 (2019)

    Article  Google Scholar 

  41. Hudson, D.A., Manning, C.D.: GQA: a new dataset for compositional question answering over real-world images. In: CVPR (2019)

    Google Scholar 

  42. Kacorri, H., Kitani, K.M., Bigham, J.P., Asakawa, C.: People with visual impairment training personal object recognizers: feasibility and challenges. In: CHI (2017)

    Google Scholar 

  43. Kacorri, H., Mascetti, S., Gerino, A., Ahmetovic, D., Takagi, H., Asakawa, C.: Supporting orientation of people with visual impairment: analysis of large scale usage data. In: ASSETS (2016)

    Google Scholar 

  44. Kamikubo, R., Kato, N., Higuchi, K., Yonetani, R., Sato, Y.: Support strategies for remote guides in assisting people with visual impairments for effective indoor navigation. In: CHI (2020)

    Google Scholar 

  45. Kollar, T., Tellex, S., Roy, D., Roy, N.: Toward understanding natural language directions. In: HRI (2010)

    Google Scholar 

  46. Kottur, S., Moura, J.M.F., Parikh, D., Batra, D., Rohrbach, M.: CLEV-dialog: a diagnostic dataset for multi-round reasoning in visual dialog. In: NAACL (2019)

    Google Scholar 

  47. Krantz, J., Gokaslan, A., Batra, D., Lee, S., Maksymets, O.: Waypoint models for instruction-guided navigation in continuous environments. In: ICCV (2021)

    Google Scholar 

  48. Ku, A., Anderson, P., Patel, R., Ie, E., Baldridge, J.: Room-across-room: multilingual vision-and-language navigation with dense spatiotemporal grounding (2020)

    Google Scholar 

  49. LI, X., et al.: Oscar: object-semantics aligned pre-training for vision-language tasks. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12375, pp. 121–137. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58577-8_8

    Chapter  Google Scholar 

  50. Lin, T.Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  51. Liu, G., et al.: Tactile compass: enabling visually impaired people to follow a path with continuous directional feedback. In: CHI (2021)

    Google Scholar 

  52. Long, R.G., Hill, E.: Establishing and maintaining orientation for mobility. Found. Orientation Mobility, 1 (1997)

    Google Scholar 

  53. Lu, J., Batra, D., Parikh, D., Lee, S.: ViLBERT: pretraining task-agnostic visiolinguistic representations for Vision-and-Language Tasks. In: NeurIPS (2019)

    Google Scholar 

  54. Savva, M., et al.: Habitat: a platform for embodied AI research. arXiv (2019)

    Google Scholar 

  55. Marston, J.R., Golledge, R.G.: The hidden demand for participation in activities and travel by persons who are visually impaired. J. Vis. Impairment Blindness 97(8), 475–488 (2003)

    Article  Google Scholar 

  56. Matuszek, C., FitzGerald, N., Zettlemoyer, L., Bo, L., Fox, D.: A joint model of language and perception for grounded attribute learning. In: ICML (2012)

    Google Scholar 

  57. Matuszek, C., Herbst, E., Zettlemoyer, L., Fox, D.: Learning to parse natural language commands to a robot control system. In: Desai, J., Dudek, G., Khatib, O., Kumar, V. (eds.) Experimental Robotics. Springer Tracts in Advanced Robotics, vol. 88, pp. 403–415, Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-319-00065-7_28

  58. Maunder, D., Venter, C., Rickert, T., Sentinella, J.: Improving transport access and mobility for people with disabilities. In: CILT (2004)

    Google Scholar 

  59. Microsoft: seeing AI app from microsoft. https://www.microsoft.com/en-us/ai/seeing-ai

  60. Misra, D., Bennett, A., Blukis, V., Niklasson, E., Shatkhin, M., Artzi, Y.: Mapping instructions to actions in 3D environments with visual goal prediction. In: EMNLP (2018)

    Google Scholar 

  61. Misra, D.K., Sung, J., Lee, K., Saxena, A.: Tell me DAVE: context sensitive grounding of natural language to mobile manipulation instructions. In: RSS (2014)

    Google Scholar 

  62. Moudgil, A., Majumdar, A., Agrawal, H., Lee, S., Batra, D.: SOAT: a scene- and object-aware transformer for vision-and-language navigation. In: NeurIPS (2021)

    Google Scholar 

  63. Narasimhan, K., Kulkarni, T.D., Barzilay, R.: Language understanding for textbased games using deep reinforcement learning. In: EMNLP (2015)

    Google Scholar 

  64. Nguyen, K., Dey, D., Brockett, C., Dolan, B.: Vision-based navigation with language-based assistance via imitation learning with indirect intervention. In: CVPR (2019)

    Google Scholar 

  65. Ohn-Bar, E., Kitani, K., Asakawa, C.: Personalized dynamics models for adaptive assistive navigation systems. In: CoRL (2018)

    Google Scholar 

  66. Ohn-Bar, E., Prakash, A., Behl, A., Chitta, K., Geiger, A.: Learning situational driving. In: CVPR (2020)

    Google Scholar 

  67. Osa, T., Pajarinen, J., Neumann, G., Bagnell, J.A., Abbeel, P., Peters, J.: An algorithmic perspective on imitation learning. arXiv (2018)

    Google Scholar 

  68. Peng, H., Song, G., You, J., Zhang, Y., Lian, J.: An indoor navigation service robot system based on vibration tactile feedback. Int. J. Soc. Robot. 9(3), 331–341 (2017)

    Article  Google Scholar 

  69. Puig, X., et al.: Watch-and-help: a challenge for social perception and human-ai collaboration. In: ICLR (2021)

    Google Scholar 

  70. Qi, Y., Wu, Q., Anderson, P., Liu, M., Shen, C., van den Hengel, A.: Reverie: remote embodied referring expressions in real indoor environments. In: CVPR (2020)

    Google Scholar 

  71. Ramakrishnan, S., Agrawal, A., Lee, S.: Overcoming language priors in visual question answering with adversarial regularization. In: NeurIPS (2018)

    Google Scholar 

  72. Rasouli, A., Kotseruba, I., Kunic, T., Tsotsos, J.K.: Pie: A large-scale dataset and models for pedestrian intention estimation and trajectory prediction. In: ICCV (2019)

    Google Scholar 

  73. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: NeurIPS (2015)

    Google Scholar 

  74. Rieser, J.J., Guth, D., Hill, E.: Mental processes mediating independent travel: implications for orientation and mobility. J. Vis. Impairment Blindness 76(6), 213–218 (1982)

    Article  Google Scholar 

  75. Roberts, P.W., Babinard, J.: Transport strategy to improve accessibility in developing countries (2004)

    Google Scholar 

  76. Roh, J., Paxton, C., Pronobis, A., Farhadi, A., Fox, D.: Conditional driving from natural language instructions. In: CoRL (2020)

    Google Scholar 

  77. Sato, D., Oh, U., Naito, K., Takagi, H., Kitani, K., Asakawa, C.: Navcog3: an evaluation of a smartphone-based blind indoor navigation assistant with semantic features in a large-scale environment. In: ASSETS (2017)

    Google Scholar 

  78. Scheutz, M., Krause, E.A., Oosterveld, B., Frasca, T.M., Platt, R.W.: Spoken instruction-based one-shot object and action learning in a cognitive robotic architecture. In: AAMAS (2017)

    Google Scholar 

  79. Schinazi, V.R., Thrash, T., Chebat, D.R.: Spatial navigation by congenitally blind individuals. In: Cognitive Science, Wiley Interdisciplinary Reviews (2016)

    Google Scholar 

  80. Soong, G.P., Lovie-Kitchin, J.E., Brown, B.: Does mobility performance of visually impaired adults improve immediately after orientation and mobility training? Optom. Vis. Sci. 78(9), 657–666 (2001)

    Article  Google Scholar 

  81. Strelow, E.R.: What is needed for a theory of mobility: direct perceptions and cognitive maps-lessons from the blind. Psychol. Rev. 92(2), 226 (1985)

    Article  Google Scholar 

  82. Tellex, S., Knepper, R.A., Li, A., Rus, D., Roy, N.: Asking for help using inverse semantics. In: RSS (2014)

    Google Scholar 

  83. Tellex, S., et al.: Understanding natural language commands for robotic navigation and mobile manipulation. In: AAAI (2011)

    Google Scholar 

  84. Thomason, J., Gordan, D., Bisk, Y.: Shifting the baseline: single modality performance on visual navigation & QA. In: NAACL (2019)

    Google Scholar 

  85. Thomason, J., Murray, M., Cakmak, M., Zettlemoyer, L.: Vision-and-dialog navigation. In: CoRL (2019)

    Google Scholar 

  86. Thomason, J., et al.: Improving grounded natural language understanding through human-robot dialog. In: ICRA (2019)

    Google Scholar 

  87. Thomason, J., Zhang, S., Mooney, R., Stone, P.: Learning to interpret natural language commands through human-robot dialog. In: IJCAI (2015)

    Google Scholar 

  88. Turano, K., Geruschat, D., Stahl, J.W.: Mental effort required for walking: effects of retinitis pigmentosa. Optom. Vis. Sci. 75(12), 879–886 (1998)

    Article  Google Scholar 

  89. Vaswani, A., et al.: Attention is all you need. In: NeurIPS (2017)

    Google Scholar 

  90. Vedantam, R., Zitnick, C., Parikh, D.: Cider: Consensus-based image description evaluation. In: CVPR (2015)

    Google Scholar 

  91. de Vries, H., Shuster, K., Batra, D., Parikh, D., Weston, J., Kiela, D.: Talk the walk: navigating New York city through grounded dialogue (2018)

    Google Scholar 

  92. Wang, H.C., Katzschmann, R.K., Teng, S., Araki, B., Giarré, L., Rus, D.: Enabling independent navigation for visually impaired people through a wearable vision-based feedback system. In: ICRA (2017)

    Google Scholar 

  93. Wang, S., et al.: Less is more: generating grounded navigation instructions from landmarks. arXiv (2021)

    Google Scholar 

  94. Wang, X., et al.: Reinforced cross-modal matching and self-supervised imitation learning for vision-language navigation. In: CVPR (2019)

    Google Scholar 

  95. Williams, M.A., Galbraith, C., Kane, S.K., Hurst, A.: "just let the cane hit it" how the blind and sighted see navigation differently. In: ASSETS (2014)

    Google Scholar 

  96. Williams, M.A., Hurst, A., Kane, S.K.: " pray before you step out" describing personal and situational blind navigation behaviors. In: ASSETS (2013)

    Google Scholar 

  97. Wong, S.: Traveling with blindness: A qualitative space-time approach to understanding visual impairment and urban mobility. Health Place 49, 85–92 (2018)

    Article  Google Scholar 

  98. Xu, K., et al.: Show, attend and tell: neural image caption generation with visual attention. In: ICML, pp. 2048–2057. PMLR (2015)

    Google Scholar 

  99. Yi, K., Wu, J., Gan, C., Torralba, A., Kohli, P., Tenenbaum, J.B.: Neural-symbolic VQA: disentangling reasoning from vision and language understanding. In: NeurIPS (2018)

    Google Scholar 

  100. Zellers, R., Bisk, Y., Farhadi, A., Choi, Y.: From recognition to cognition: visual commonsense reasoning. In: CVPR (2019)

    Google Scholar 

  101. Zhang, J., Ohn-Bar, E.: Learning by watching. In: CVPR (2021)

    Google Scholar 

  102. Zhang, J., Zheng, M., Boyd, M., Ohn-Bar, E.: X-world: accessibility, vision, and autonomy meet. In: ICCV (2021)

    Google Scholar 

  103. Zhang, J., Zhu, R., Ohn-Bar, E.: SelfD: self-learning large-scale driving policies from the web. In: CVPR (2022)

    Google Scholar 

  104. Zhao, M., et al.: On the evaluation of vision-and-language navigation instructions. ArXiv (2021)

    Google Scholar 

  105. Zhu, F., Zhu, Y., Lee, V., Liang, X., Chang, X.: Deep learning for embodied vision navigation: a survey. arXiv (2021)

    Google Scholar 

Download references

Acknowledgments

We thank our study participants and the support of the Department of Transportation Inclusive Design Challenge, NSF (IIS-2152077), and a Boston University CISE grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongkai Shangguan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, Z., Shangguan, Z., Zhang, J., Bar, G., Boyd, M., Ohn-Bar, E. (2022). ASSISTER: Assistive Navigation via Conditional Instruction Generation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13696. Springer, Cham. https://doi.org/10.1007/978-3-031-20059-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20059-5_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20058-8

  • Online ISBN: 978-3-031-20059-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics