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Abstract. General Purpose Vision (GPV) systems are models that are
designed to solve a wide array of visual tasks without requiring archi-
tectural changes. Today, GPVs primarily learn both skills and concepts
from large fully supervised datasets. Scaling GPVs to tens of thousands
of concepts by acquiring data to learn each concept for every skill quickly
becomes prohibitive. This work presents an effective and inexpensive al-
ternative: learn skills from supervised datasets, learn concepts from web
image search, and leverage a key characteristic of GPVs: the ability to
transfer visual knowledge across skills. We use a dataset of 1M+ images
spanning 10k+ visual concepts to demonstrate webly-supervised concept
expansion for two existing GPVs (GPV-1 and VL-T5) on 3 benchmarks:
5 Coco-based datasets (80 primary concepts), a newly curated series of 5
datasets based on the OpenImages and VisualGenome repositories (∼500
concepts), and the Web-derived dataset (10k+ concepts). We also pro-
pose a new architecture, GPV-2 that supports a variety of tasks — from
vision tasks like classification and localization to vision+language tasks
like QA and captioning, to more niche ones like human-object interac-
tion detection. GPV-2 benefits hugely from web data and outperforms
GPV-1 and VL-T5 across these benchmarks. Our data, code, and web
demo are available at https://prior.allenai.org/projects/gpv2.
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1 Introduction

General Purpose Vision systems (GPVs) [25] are designed to support a wide
range of tasks without requiring architectural changes. A task is the application
of skills (e.g. localization, captioning) to concepts (e.g. monkey, brown, climbing)
in order to map from the input (image, text) to a target output (text, boxes).
Given the virtually unlimited number of fine-grained and topical concepts, it is
not feasible to provide a GPV with annotations for all skills on all concepts, as
even large pre-collected datasets cannot anticipate every need. In this work, we
ask: Can a GPV leverage web image search and skill-concept transfer to massively
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Fig. 1: Learning concepts from the web with GPV-2. We demonstrate webly-
supervised concept expansion on two existing GPV architectures (GPV-1 and VL-T5)
as well as our proposed GPV-2 architecture. In addition to outperforming previous ar-
chitectures, GPV-2 expands the inputs to contain bounding boxes which enables sup-
port for niche tasks like Human-Object Interaction detection with multi-step inference
without any architectural modifications.

and inexpensively expand its concept vocabulary across a variety of tasks? To an-
swer this question, we present a large-scale webly supervised dataset for learning
10k+ concepts, a new benchmark for broader concept evaluation (∼500) across
5 diverse tasks, and a new GPV architecture that improves cross-task concept
transfer and outperforms existing GPVs across multiple benchmarks.

Image search engines provide remarkably good results for millions of queries
by leveraging text on the accompanying web pages, visual features from images,
and click data from millions of users querying and selecting relevant results each
day. They often provide high-quality, decluttered, object- and action-centric im-
ages, which can be used to learn powerful visual representations for concepts.
Importantly, searches scale easily and inexpensively to thousands of queries.
Given the large cost of producing high-quality supervised datasets, scaling to-
day’s manually annotated datasets to support 10,000+ concepts is infeasible
for many tasks. In contrast, using Bing search to create Web10k, a dataset
with 1M+ images spanning 10k nouns, 300 verbs, and 150 adjectives with thou-
sands of noun-verb and noun-adj combinations, cost us just over $150. Moreover,
while existing data sources such as ImageNet-22k and YFCC100M are valuable
resources, they are static snapshots of a diverse and ever-changing world. For ex-
ample, these static datasets may not represent specialized categories of interest
to a downstream application such as boysenberry and will definitely not contain
latest concepts such as Pixel 6 or COVID-19 home test. On the other hand,
modern web image search engines are designed to serve imagery on-demand and
are uniquely positioned to act as a source of training data for novel and latest
concepts. While search engine data provides strong supervision for classification,
we demonstrate that current GPVs, GPV-1 [25] and VL-T5 [14], are able to
learn concepts from web data and improve on other skills as well, such as image
captioning. Importantly, we show that even models that already utilize large-
scale pretraining corpora such as Conceptual Captions continue to benefit from
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using search engine data and can be easily extended to support new concepts
relevant in the present day that have little or no coverage in large static corpora.

We also propose GPV-2, a powerful GPV that can accept as input an image,
a task description, and a bounding box (allowing the user to point at an object
or region of interest), and output boxes and text for any bounding box or for
the entire image. These diverse input and output modalities enable GPV-2 to
support a large spectrum of skills ranging from vision skills like classification and
localization, vision-language skills like VQA and captioning, to niche ones like
classification in context and human-object interaction detection. An important
design principle of GPV-2 is Language-Based Localization, whereby all tasks
are based on scoring/ranking/generation using the same text decoder applied to
one or more image regions. This ensures that all tasks share the same weights
and representations, ranging from the input encoders all the way to the output
decoders — resulting in more effective skill-concept transfer for learning from
diverse tasks’ datasets. We also propose a re-calibration mechanism to down-
weight scores of labels that are disproportionally represented in training, and
demonstrate its effectiveness on out-of-domain test datasets for multiple tasks.

Benchmarking the diverse capabilities of large-vocabulary general purpose
models is challenging. Most current datasets in computer vision are designed
for single tasks. The recently proposed Coco-sce [25] benchmark is designed
to test the skill-concept transfer ability and overall skill competency across five
vision skills. However, it is limited to evaluate these competencies on 80 primary
Coco concepts. In this work, we present a new benchmark named DCE for
broader concept evaluation for the same five skills but now expanding to 492
OpenImages concepts. DCE is an evaluation-only benchmark sourced from
OpenImages [42], VisualGenome [40] and NoCAPS [2] with new VQA anno-
tations and has been sampled in a way that prevents over-representation of any
single category while maximizing representation of infrequent categories.

We evaluate present day GPVs and GPV-2 on three benchmarks: (i) the
Coco-sce and Coco benchmarks [25], (ii) the newly presented DCE bench-
mark; and (iii) the Web10k dataset consisting of manually verified images from
Bing Image Search paired with questions and answers that covers 10,000+ con-
cepts. Our analysis shows that all three GPVs benefit from web data. Further-
more, GPV-2 outperforms both GPV-1 and VL-T5 across these benchmarks
and shows significantly large gains when using web data, particularly for cap-
tioning and classification. We also demonstrate how GPV-2 can be chained
to perform niche tasks like human-object interaction detection, without any
task-specific architecture modifications. Finally, we show how web data can be
efficiently used to expand GPV-2’s concept vocabulary to include new visual
concepts that are relevant in today’s world such as COVID-19 vaccination cards
and N95 masks, concepts that are infrequent or non-existent in static corpora.

In summary, our main contributions include: (a) Web10k, a new web data
source to learn over 10k visual concepts with an accompanying human-verified
VQA benchmark; (b) demonstration that GPVs can learn concepts from Web10k
and transfer this knowledge to other tasks; (c) DCE, a benchmark spanning
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5 tasks and approximately 500 concepts to evaluate GPVs; and (d) GPV-2,
an architecture that supports box and text modalities in both input and out-
put, improves skill-concept transfer and outperforms existing GPVs. Our code
and benchmarks are available at https://prior.allenai.org/projects/gpv2,
along with a new tool to easily create a web dataset from a list of queries.

2 Related Work

General purpose models. Computer vision models have progressively become
more general. Specialization first gave way to multitask models which aimed at
solving multiple, albeit predefined, tasks with one architecture. A common ap-
proach for building such models [51,28] is to use task-specialized heads with a
shared backbone. However, adding a new head for each new task makes scaling
to a large number of tasks and reuse of previously learned skills challenging.
An alternative approach is to build a general-purpose architecture without task-
specific components. This approach has become common in natural language
processing via text-to-text generative models [64,5,55], and recent work in com-
puter vision has striven towards this kind of generality [17,7,37,49].

Examples of general-purpose computer vision models include VL-T5 [14],
which adapts T5 [64] to jointly train on vision+language (V+L) tasks while
using a single text-generation head to produce outputs for all tasks, and GPV-
1 [25], which combines a similar text-generation head with the ability to return
bounding-boxes and relevance scores as output. In this work, we work with both
GPV-1 and VL-T5 and extend their concept vocabulary with web data. Our
proposed model, GPV-2 follows VL-T5 in its use of the T5 backbone, builds
upon the vision capabilities of GPV-1, and further extends the range of tasks
that can be performed by allowing a bounding-box input and introducing the
ability to generate per-image-region text output. Perceiver [31] and Perceive-
rIO [30] aim to generalize the architecture beyond images and text to other
modalities such as audio, video, and point cloud. However, both architectures
remain to be tested for multitask learning and for learning V+L tasks such as
VQA and captioning. Many other V+L models [83,73,13,47,52] can be fine-tuned
on a variety of downstream tasks, but they typically use task-specific heads, while
the focus of our work is on general purpose models in a multi-task setting.
Web supervision. Image search engines provide highly relevant results, using a
combination of text, image and user features. Researchers have used search data
as a form of supervision to build computer vision models. Early works used noisy
retrieved results with probabilistic Latent Semantic Analysis [20] and multiple
instance learning [77] to build recognition systems. As web results improved,
works used this data to build object detectors [15,11,46,70,53,82], attribute de-
tectors [21], image taggers [80], large vocabulary categorization models [84,56,24]
and fine-grained recognition models [39,57], segmentation models [69,33,72], on-
line dataset builders [44], visual reasoning systems [91] and visual knowledge
bases with learnt relationships between objects [12]. More recently, massive scale
web data in the form of retrieved search results and the accompanying text was

https://prior.allenai.org/projects/gpv2
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employed to build the powerful CLIP family of models [62] that provide powerful
visual representations for downstream tasks. While these works have shown that
web data can be used to build single task models, we show that one can build
GPVs with web data and importantly transfer this knowledge across skills.

Concept transfer across skills. There has been considerable interest in trans-
ferring concept knowledge from classification to object detection, as classification
labels are far cheaper to obtain than detection labels. Hoffman et al . [29] cast
this problem as a domain adaptation problem, adapting classifiers to detectors.
Redmon et al . [66] build a 9,000 class detector using Imagenet22k classification
data [16] by jointly training for the two tasks. Uijlings et al . [74] use Multiple
Instance Learning to pseudo-label data and train a large vocabulary detector.
Recent works build open vocabulary detectors [87,23,32] by leveraging image
caption pairs (or models like CLIP [63] which are built from the same), ob-
tained in large quantities on the web. Even though image-captions are noisy, the
resulting detectors improve as the data is scaled up.

The V+L field has leveraged object detectors as feature inputs [3,89,2], which
can be considered as transferring concepts from detection to downstream tasks.
Another effective approach is pre-training using image-captions [50,45,47] like
Conceptual Captions [67]. CLIP [63] is a family of powerful models that are pre-
trained on a massive 400M image caption paired dataset. The resulting encoders
are very effective at V+L tasks [68]. These methods effectively transfer visual
knowledge from caption data to tasks like VQA. Recently Whitehead et al . [81]
disentangle the encoding of concepts and skills and build a model that can
generalize to new skill-concept compositions and new concepts for VQA.

The focus of our work is to build a GPV that can transfer concepts across
various skills, particularly from web data to vision and vision-and-language skills,
and also provide a new test-only evaluation benchmark for the same.

3 The WEB10K dataset

Search engines can be leveraged to collect datasets with highly desirable char-
acteristics: (1) Diversity — Search engines benefit from a large volume of user
click data to produce high-quality results for a large vocabulary of concepts in-
cluding tail concepts not frequently mentioned in annotated computer vision
datasets (e.g. hyacinth); (2) Freshness — Search engines are designed to serve
the freshest content on the internet, and often produce very good results for the
latest queries (that may not have existed or been popular before; e.g. COVID-19
vaccination card, 2022 winter olympics mascot) which have few/no occurences in
standard vision datasets that tend to be static; and (3) Concept focus — The
image distribution of search engine results tends to be similar to image classifi-
cation data with the image centered on the queried object with few distractions,
making them ideal for learning visual concept representations.

We present Web10k, a dataset sourced from web image search data with
over 10K concepts. Web10k contains queries with nouns, adjectives and verbs.
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Fig. 2: Concept diversity in WEB10K. Left: Besides 10k nouns, Web10k provides
dense coverage of feasible adj-noun and verb-noun combinations to enable learning
of fine-grained differences in object appearance due to attributes. Right: TSNE [54]
plot of Phrase-BERT [78] embeddings of Web10k nouns with bubble size indicating
frequency (capped at 1000) in CC, a common large-scale pretraining dataset. Web10k
nouns cover a wide range of concept groups identified using WordNet and include many
concepts which are infrequent/absent in CC.

Nouns. We consider single and multi-word nouns. Single-word nouns are sourced
from a language corpus with a list of 40,000 concrete words [6], each with a con-
creteness score (defined as the degree to which a word refers to a perceptible
entity). From this list, we select nouns with a concreteness score > 4.0/5 and
any verb or adjective with an alternate word sense as a noun (e.g. “comb”)
with a score > 4.5/5. These thresholds avoid more abstract or non-visual words
such as “humor”. Multi-word nouns are sourced from Conceptual Captions
(CC) [67]. We identify candidates using POS tagging and select the most fre-
quent 2,000, and an additional 282 where the second word of the multi-word
noun is present in the concreteness dataset (e.g. “street artist”, where “artist”
is in concrete nouns). In total, we select 10,211 nouns. Sourcing nouns from a
language corpus enables coverage of concepts not commonly covered in vision
datasets: over 4,000 nouns in Web10k are not present in CC, e.g. “wind tunnel”.

Verbs. We source verbs from a combination of vision datasets with large verb
vocabularies including imSitu [85], HICO [9] and VRD [48]. We remove verbs
that are either polysemous (have multiple meanings e.g. “person holding breath”
vs. “person holding cup”) or aren’t associated with an animate agent (e.g. “snow-
ing”). This results in 298 unambiguous and visually recognizable verbs. These
verbs improve model performance on action recognition (Supplementary Sec. 8).

Adjectives. We source adjectives from several datasets that have a large number
of adjectives [67,40,19,43,41,60,59,10,79]. We manually filter out ones that are
subjective (“beautiful”), non-visual (“loud”), or relative (“big”). This results in
144 adjectives which we group into 16 adjective types (e.g. “color”, “texture”).

We select noun-adj pairs and noun-verb pairs which appear at least thrice
in CC: this removes nonsensical pairs, e.g. “cloudy dog”. The total number of
queries in Web10k is 38,072 with roughly 10k nouns, 18k noun-adj and 9k noun-
verb combinations. We feed each query into the Bing Search API and retrieve a
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Table 1: Left: Web10k statistics (Sec. 3). There are approximately 25 images per
concept. Right: DCE val and test statistics (Sec. 5).

Type Count

Concepts

Nouns: 10211
Adjectives: 144
Verbs: 298
Noun-adjective pairs: 18616
Noun-verb pairs: 9243
Total: 38072 (Nouns + Pairs)

Images

Noun images: 255073
Noun-adjective images: 465146
Noun-verb images: 230224
Total: 950443

QAs

Templates: 26
Noun QAs: 1900886
Adjective QAs: 930292
Verb QAs: 460448
Total: 3291626

Subset Skill Samples Images Categories

Val

VQA 5169 2131 295
Localization 8756 7588 463
Classification 9485 6770 464
Cls-in-context 9485 6770 464
Captioning 4500 4500 -

Test

VQA 5281 2160 307
Localization 10586 9986 476
Classification 10888 9161 476
Cls-in-context 10888 9161 476
Captioning 10600 10600 -

Note: Since nocaps [2] annotations are hidden behind an
evaluation server, we are unable to provide category
counts for captioning.

total of 950,443 image URLs (approx. 25 per query). Importantly, this cost us
$154, so it is inexpensive to scale further, and such data acquisition is affordable
for many other research organizations. See Tab. 1 for detailed statistics.
Conversion into QA data. We convert each query-image pair into multiple
templated QA pairs where the answer is the noun, adjective or verb from the
query. For example “What is the [noun] doing?” and “What [adj type] is this
object?”; see Supplementary Sec. 3 for all question templates. The QA format
has two advantages: (1) it removes ambiguity from the task (e.g., “What color
is this” tells the model not to return a potentially accurate non-color attribute);
and (2) it bridges the domain gap to other tasks posed as questions.
Data Splits. We split image-query pairs into train (874k), val (38k) and test
(38k). We sample 5k and 10k pairs from the val and test sets and ask 3 crowd-
workers to verify that the query is present in the image. We only retain unani-
mously verified examples (71%) resulting in: Val – 4k images (9k QAs), Test – 8k
images (19k QAs). The Train set has about 3M QAs with no manual verification.

4 GPV-2

In this section we present GPV-2, a model combining an object detector with the
T5 pre-trained language model. GPV-2 supports additional input and output
modalities (and thus tasks) beyond present day GPVs (GPV-1 and VL-T5). It
uses the stronger VinVL [89] object detector, uses a shared language decoder
(for all tasks including localization) and employs a classification re-calibration
approach, which together improve generalization to unseen concepts at test time.
Model design. GPV-2 takes an image, text, and a bounding box as input. As
output, it can produce text for an individual bounding box (the input box, or
boxes produced by the visual model) and for the entire image (see Fig. 3).

First, the input text is tokenized and embedded using T5-Base to get a
sequence of text feature vectors. Then an object detection model is used to
identify regions in the image and extract bounding boxes and features for those
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Fig. 3: Left: GPV-2 architecture. Right: I/O for 5 skills in Coco and DCE.

regions (we do not use the class labels identified by the detector) via RoI pooling.
We additionally use the object detector to extract features for the input bounding
box, and a learned embedding is added to those features to distinguish them
from the other visual features. These sets of visual features are then converted
to embeddings of the same dimensionality as the text embedding using a linear
layer. We primarily use the VinVL [89] object detector for our experiments.
However the GPV-2 architecture allows us to easily swap in other detectors,
and we use features from DETR [7] for some of our experiments in Sec. 6.

The resulting visual and text vectors are concatenated as a sequence and
used as an input to the T5-Encoder to build joint contextualized embeddings. To
generate text for the entire image we use the T5-Decoder with this contextualized
embedding sequence as input, and to generate text for individual boxes we run
the same T5-Decoder while using the contextualized embedding that corresponds
to just that box as input. The usage of a common decoder for image-based
outputs and region-based outputs enables transfer of learned concepts between
skills that require processing the entire image and skills that rely primarily on
the representation of a single region.
Using GPV-2. GPV-2’s design gives us flexibility to handle a variety of vision
and vision+language tasks without needing task-specific heads. For tasks that
do not have text input, we follow [25] by building appropriate text prompts for
that task (e.g., “What is this object?” for classification) and selecting one at
random to use as the input text. For tasks that do not have an input bounding
box, we use a box around the entire image.

Decoded text from the image is used to answer questions and generate cap-
tions. For classification or limited-choice responses, answers are scored based on
log-probability of generating each option, and the highest scoring answer is cho-
sen. To localize objects, we propose Language-Based Localization (LBL) where
a box is scored by first computing the log-probabilities of generating an ob-
ject class or “other” from that box, and then applying a linear classifier to those
scores to yield a scalar relevance score. For example, “Localize dog” is performed
by computing the log-probability of “dog” and “other” for each region.

Importantly, the same text decoder is used to generate image and region text,
thus classification, question answering, captioning, localization, and all other
tasks use the same encoders, decoder, and weights. Our experiments show that
this facilitates skill-concept transfer.

Even complex tasks like human-object interaction (HOI) can be performed
by chaining inference steps (Fig. 1). HOI [9,8] requires localizing a person, an
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object and categorizing their interaction. GPV-2 performs this by first returning
detections for “Locate person”, then providing each person box as input with
the prompt “What is this person doing?” The log-probs of generating object-
interaction phrases, such as “directing the airplane” for other boxes are used to
identify the most likely interaction.
Classification re-calibration. We observe that a common issue in classifica-
tion is that the model becomes biased towards classes that are common in the
training data. For example, we find that if the model is trained to classify Coco
objects it will almost always guess the names of Coco objects in response to
the prompt “What is this object?”, even if no such objects exist in the image.
This can be viewed as a language bias, as has been well-studied in VQA [22,65].
To solve this issue we re-calibrate the models output prediction by reducing the
log-probability of classes that were seen in the training data when doing answer
re-ranking. The down-weighting amount is selected on the validation data. See
Supplementary Sec. 2 for an analysis and example.
Pre-training. Recent works have shown that pre-training V+L models on large
amounts of data results in large improvements [14,47,89]. We do not have the
resources to fully-replicate these setups, but as a partial measure we pre-train
GPV-2 for 8 epochs on the CC3M dataset [67], which shows significant gains on
our benchmarks. Since GPV-2 is generative, we pre-train it by simply learning
to generate the target caption rather than using span masking or other more
complex objectives [47,73]. While we use much less data than some V+L works,
pre-training on CC3M allows us to verify that GPV-2 still benefits from web
data even when exposed to a broad range of concepts during pre-training.

5 DCE Benchmark

The Coco benchmark focuses on 80 object categories and is insufficient for
evaluating skills on a wide range of concepts. We introduce the Diverse Concept
Evaluation (DCE) benchmark to evaluate GPV models on a large subset of the
600 OpenImages categories across 5 skills: classification (Cls), classification-in-
context (CiC), captioning (Cap), localization (Loc), and visual question answer-
ing (VQA). See Fig. 3 for the inputs and outputs for each task. We introduce
CiC as a natural and unambiguous object classification task (similar to pointing
at an object and asking what it is), providing a direct complement to localiza-
tion. We source Cls, CiC and Loc samples from OpenImages, VQA samples
from VisualGenome (VG), and use the nocaps [2] benchmark for Cap evalua-
tion. To curate the DCE benchmark, we first select a set of mutually exclusive
categories from OpenImages and draw samples for each of those categories ac-
cording to a sampling strategy that prevents over-representation of any category
while maximizing representation of tail categories. DCE is an evaluation-only
benchmark and is not accompanied by a distributionally similar training set.
Category selection. OpenImages provides a total of 600 hierarchical object
categories. After removing some categories due to label noise, we use the remain-
ing 492 leaf nodes in the hierarchy as our mutually exclusive set of categories.
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Table 2: Concept expansion with web data. Jointly training on Web10k + Coco
shows consistent gains on DCE and Web10k benchmarks without adversely affecting
Coco performance for 3 different GPVs. GPV-120 refers to 20 epoch training.

Coco DCE Web10k
Model Web data VQA Cap Loc Cls CiC VQA Cap Loc Cls CiC All Nouns Verbs Adj

[a] GPV-1 no web 62.5 102.3 73.0 83.6 - 45.3 25.8 61.9 10.1 - 11.9 2.7 8.5 24.5
[b] GPV-120 no web 61.2 95.7 65.3 82.3 - 44.3 23.1 60.3 9.3 - 13.1 3.1 7.7 28.4
[c] GPV-120 with web 61.5 97.3 64.9 82.8 - 45.8 28.6 61.5 20.0 - 54.4 32.7 51.7 78.8

[d] VL-T5 no web 69.8 100.7 - 78.1 - 60.2 31.6 - 10.9 - 18.6 4.3 15.8 35.7
[e] VL-T5 with web 69.9 106.4 - 77.3 - 59.9 45.0 - 16.2 - 61.0 38.0 59.3 85.8

[f] GPV-2 no web 71.1 112.1 70.9 82.2 93.4 60.6 65.4 74.8 36.3 43.6 22.5 3.8 23.6 39.9
[g] GPV-2 with web 71.4 113.0 70.9 82.3 93.2 61.1 72.5 75.9 45.4 52.2 62.0 41.7 60.0 84.3

Sampling strategy. For Cls, CiC and Loc, we randomly sample up to 25 sam-
ples from each of the selected categories. A sample for Cls/CiC is defined as
any bounding box annotated with a category. For Loc, a sample is all bounding
boxes in an image annotated with a category (we discard “group” annotations).
For VQA, we first discard annotations exceeding 2 word answers after removing
articles and tag each QA pair in VG with any of the selected categories men-
tioned in either the question or answer. Then, for each category, we sample up
to 50 data points. Since each sample in VQA may consist of multiple categories,
this strategy does result in more than 50 samples for some categories, but in
practice it achieves the goal of preventing common categories from dominating
the evaluation. Finally, some of the 492 categories do not have annotations in
the source datasets. The final sample, image, and category counts for each skill
are in Tab. 1 and category frequencies are shown in Supplementary Sec. 4.
Additional VQA annotations. VQA annotations from VG only consist of
one answer per question. For each selected VQA sample, we source 9 additional
answers from Amazon Mechanical Turk as in standard Coco-based VQA bench-
marks [22,4]. Samples where ≥3 workers agreed on an answer were retained.

6 Experiments

We train models jointly on all tasks that are supported by each GPV using
Coco-based datasets. In addition, each model is also trained with and without
training data from Web10k. We evaluate these models on in-domain test sets
for each task as well as on the Web10k and DCE test sets.

We now summarize the tasks and training details. See Figure 3 for the in-
puts/outputs for each task and Supplementary Sec. 6 for additional experimental
details. VQA: We train on the VQA v2 [22] train set and report results using
the annotator-weighted metric from [22] on the VQA v2 test-dev set and DCE
test set. Captioning: We train on Coco captioning and report CIDEr-D [76]
on Coco test. DCE uses nocaps [2] for captioning. Due to space constraints, we
only report CIDEr-D on the out-of-domain split, as performance on novel con-
cepts is our primary interest. See Supplementary Sec. 11 for results on all splits.
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Table 3: Concept scaling using web data: Closed world experiment. To
eliminate the effect of VinVL features and CC pretraining, we restrict GPV-2 to
Coco-sce trained DETR features. Training jointly with Web10k still shows massive
gains on DCE and Web10k vs training with only Coco-sce.

Coco-sce DCE Web10k
VQA Cap Loc Cls VQA Cap Loc Cls All Noun Verb Adj

Model Web data Test Sn Unsn Test Sn Unsn Test Sn Unsn Test Sn Unsn

GPV-2 no web 59.6 60.1 48.5 88.4 91.7 55.5 62.2 67.2 14.0 73.1 77.2 33.9 46.9 21.1 54.9 13.6 14.0 3.3 11.6 27.1
GPV-2 with web 59.9 60.3 49.7 89.2 92.1 58.0 62.2 67.0 14.8 73.0 77.2 32.6 46.8 33.4 58.7 26.5 47.0 25.1 43.0 73.0

Localization: Localization training data is built from bounding box annota-
tions in Coco images following [25]. We report mAP on the Coco val set (since
the test servers do not support this task) and the DCE test set. VL-T5 does not
support this task out-of-the-box since it does not have a means to rank its input
boxes, so we do not train or evaluate it for this task. Classification: We use the
classification data from [25] and report accuracy on the Coco val set and the
DCE test set. Since DCE is out-of-domain we apply the re-calibration method
from Sec. 4 for GPV-2. Classification-in-Context: The same as classification,
except instead of cropping images the bounding box of the target object is used
as an input box. Having an input box means only GPV-2 supports this task.
Training details. We train GPV-2 and VL-T5 for 8 epochs with a batch size
of 60 and learning rate of 3e-4 that linearly warms up from 0 for 10% of the
training steps then decays to 0. We stratify the data so examples from each
source are proportionally represented in each batch. Since the web data is large,
we shard the data into 4 parts and use 1 shard each epoch, resulting in about
a third of the data in each epoch being web data. VL-T5 is initialized with a
pre-trained checkpoint [14] and GPV-2 is initialized from our checkpoint after
CC pre-training. We train GPV-1 to 40 epochs following [25]3.

Concept expansion using web data. Table 2 shows the performance of mod-
els when trained with and without Web10k. On DCE, which contains a more
diverse set of concepts than Coco, we find that all models benefit from web
data and perform better on captioning and the two classification tasks (with
large gains of +7.1, +9.1, +8.6 for GPV-2). We see modest gains of +1.0 for
DCE localization. VQA shows small gains, presumably because many frequent
answers such as colors or numbers are common between Coco and DCE, and
adding web supervision brings little benefits for such questions. Training with
web data makes little difference on Coco and, unsurprisingly, leads to large
gains on Web10k test, where models achieve over 40% accuracy on nouns and
60% on verbs despite the large number of concepts. Overall, these results show
multi-tasking GPVs with web data improves performance significantly on con-
cepts unseen in supervised data without compromising in-domain performance.

Of the three GPVs we test, we find GPV-2 to be the most effective across all
three benchmarks. GPV-2 uses less pre-training data and a simpler and cheaper

3 Since [25] takes a long time to train when using the web data (over 3 weeks), results
for GPV-1 with and without web data are reported after 20 epochs training.
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Table 4: Ablating GPV-2. The left-most columns indicate using Web10k (‘Pre.’
indicates pre-training with Web10k instead of multi-tasking), CC pre-training, clas-
sifier re-calibration (Cb), language-based localization (LBL) (see Sec. 4), and VinVL
instead of the DETR detector from GPV-1. The first row shows results for GPV-2,
and the lower rows show the differences in scores between ablations and GPV-2. Each
component improves performance on DCE.

Coco DCE Web10k
Web CC Cb LBL Vin. VQA Cap Loc Cls CiC VQA Cap Loc Cls CiC All Nouns Verbs Adj

X X X X X 70.7 117.3 70.9 82.3 93.2 60.7 78.0 76.8 45.8 52.2 60.4 39.9 57.5 83.8
- X X X X -0.2 -1.1 0.0 -0.1 0.2 -0.5 -8.8 -1.0 -8.5 -7.4 -37.2 -35.4 -32.5 -43.8

Pre. X X X X -0.4 -0.6 0.0 -0.2 0.1 -0.8 -8.2 -1.3 -6.2 -5.5 -31.3 -30.4 -27.6 -35.9
X - X X X 0.4 -2.4 0.1 0.5 0.1 0.8 -13.9 -0.7 -4.3 -4.5 -2.3 -3.7 -2.4 -0.9
- - X X X 0.2 -4.2 0.1 0.5 0.2 -0.2 -33.7 -4.5 -20.7 -21.1 -40.6 -37.4 -39.3 -44.9
X X - X X 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -11.8 -12.8 0.0 0.0 0.0 0.0
X X X - X -0.1 -1.4 0.0 0.3 0.0 -0.2 -2.4 -1.3 -1.3 -0.7 0.1 0.2 0.7 -0.8
X X X X - -8.1 -15.8 6.1 -2.2 - -9.8 -41.7 -15.0 -17.4 - -13.8 -13.3 -16.4 -11.7

pre-training strategy than VL-T5. However, it uses more powerful VinVL [89]
features and benefits from classifier re-calibration (See Tab. 4). In contrast to
VL-T5, GPV-2 can also perform CiC and localization. In contrast to GPV-1,
GPV-2 has more shared features and a better pre-trained language model, which
help produce large gains across the benchmarks. It also trains much faster than
GPV-1 as it can use pre-computed detection features (1 day on 2 GPUs vs. >3
weeks on 4 GPUs). See Supplementary Secs. 10 and 5 for more comparisons and
GPV-2 efficiency metrics respectively. GPV-2 also achieves state-of-the-art on
the GRIT benchmark [26] at the time of submission (Supplementary Sec. 9).

Closed world evaluation of web data. Table 3 shows results for GPV-2
when it is trained on the Coco-sce [25] dataset, a dataset that holds out dif-
ferent concepts from each Coco training supervised dataset (e.g., captions that
mention the word “bed” are held out from the caption training data), and then
evaluates whether models can still perform well on those unseen concepts by
learning about them from the data in other tasks (e.g., captions with the word
“bed” are in the captioning test set, and classification and localization train-
ing still include examples about beds). When GPV-2 is trained on Coco-sce
we make two notable changes: (1) We replace VinVL features with DETR [7]
features trained only on the Coco-sce training categories (this avoids leak-
ing detection information by VinVL’s broad category set); and (2) We do not
pre-train with CC (this avoids leaking caption information from CC’s broad
vocabulary). These choices severely reduce the performance of the model, but
this setup serves as a closed world evaluation to determine if GPV-2 can learn
skills from Coco-sce and concepts from Web10k. As seen in Table 3, training
with web data shows large gains across the board in this controlled experiment.
In fact, we now also see gains in the unseen categories within Coco-sce.

Ablation analysis. We perform ablation studies on GPV-2. Table 4 shows
results on the validation sets. The model that does not use LBL scores each box
using a linear classifier on top of its contextualized embedding instead. On both
classification tasks and captioning, we find that web data helps with and with-
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VQA Captioning Localization Classification (cropped) Classification in Context

Find balance beam. What is the type of dress 
women wearing?

What is this thing? What is this?

guacamole
broccoli

What is happening?

solid lines
dotted lines

sari
scarves

a toddler wearing a hat
riding a tricycle.

a small child in a hat
riding a bike

gondola
motorcycle

VQA Captioning Localization Classification (cropped) Classification in Context

Find the temperature scanner. What is he holding? What is this? What is this?

pcr test

Describe the image.

covid vaccination card a close up of a person 
wearing a kn95 mask

nasal swab

Legend: with web without web

What color is the burrito? Describe this image. Locate cart in the image. What object is this?

polar bear
sheep

What is this object?

brown
green

a small blueberry muffin on a 
yellow plate.

a close up of a plate of food 
on a table

harpsichord
suitcase

solid lines
dotted lines

Fig. 4: Qualitative results of GPV-2 on DCE with and without WEB10K:
Without web training, GPV-2 can ignore concepts rarely seen in the supervised train-
ing data (e.g., ‘balance beam’ top middle) or predict frequently occurring concepts that
do not appear in the image (e.g., ‘sheep’ lower right). Web training fixes these issues
and allows generalization to rare concepts like ‘sari’ and ‘harpsichord’.

out CC pre-training, and that removing both reduces performance dramatically
(>30 points for captioning). This shows that the two approaches are indepen-
dently effective and complementary at helping models handle new concepts. This
is also true to a more modest extent for localization. Using the web data for a
second round of pre-training performed better than not using it, but was sig-
nificantly worse than our multi-tasking framework. Re-calibration is critical for
classification, providing a gain of up to 12 points, confirming that models tend
to be overly influenced by the concept distribution observed during training.
Performance on Coco remains largely unchanged, which is expected as our de-
sign choices target performance on unseen concepts. Finally, VinVL significantly
out-performs DETR, as expected given its much more extensive training regime.

Human object interaction. To demonstrate the flexibility of GPV-2, we also
employ it for human-object interaction detection [8] using the two-stage proce-
dure described in Sec. 4. We fine-tune GPV-2 on the HICO-Det train set for 4
epochs (see Supplementary Sec. 7 for details). GPV-2 gets an AP of 20.6 on the
HICO-Det benchmark, which is comparable to a number of other approaches
(17.2 [27], 19.8 [75], 20.8 [92], 21.8 [18]). Although recent models [36,93,88] show
results up to 32.1 mAP [88], they require highly specialized architectures requir-
ing up to 5 output heads (e.g. for decoding human+object boxes, interaction
score, and object and interaction categories), well crafted losses (e.g. Hungarian
HOI instance matching objectives), and custom post-processing steps (e.g pair-
wise non-maximum suppression). GPV-2’s flexibility allows us to get reasonable
results by side-stepping complex model design with simple chained inference.

Qualitative results from DCE (Figure 4). Training on Web10k helps
GPV-2 understand rare concepts like ‘sari’ or ‘gondola’, which it is able to
use across diverse skills. See Supplementary Sec. 1 for more examples.
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VQA Captioning Localization Classification (cropped) Classification in Context

Find balance beam. What is the type of dress 
women wearing?

What is this thing? What is this?

guacamole
broccoli

with web: 
without web:

What is happening?

solid lines
dotted lines

sari
scarves

a toddler wearing a hat
riding a tricycle.

a small child in a hat
riding a bike

gondola
motorcycle

VQA Captioning Localization Classification (cropped) Classification in Context

Find the temperature scanner. What is he holding? What is this? What is this?

pcr test

Describe the image.

covid vaccination card a close up of a person 
wearing a kn95 mask

nasal swab

Fig. 5: Qualitative results on novel concepts: The predictions of GPV-2 after
fine-tuning on COVID-related web data. The model can recognize the new concepts in
new images across all skills after training on only ∼20 images per concept.
Novel concepts case study. A unique advantage of using web-search is the
ability to easily and cheaply access new visual concepts that are too specialized
or too recent to appear in statically-collected corpora. To demonstrate this we
present qualitative results on an experiment to train GPV-2 to learn a number of
COVID-19 related concepts. We collect 43 terms related to COVID-19 (e.g., N95
mask, face shield, etc.) and gather a 1000-image train set with a 100-image val
set using the same automatic pipeline we used to gather Web10k. We fine-tune
GPV-2 (after it has been trained on Coco and Web10k) on these examples
mixed with a sample of 2000 examples from each Coco train set for 3 epochs.

After fine-tuning, the model achieves 71% accuracy on the new val set com-
pared to only 4% without fine-tuning (performance is initially low since these
concepts are too specialized and new to appear in CC, Coco or Web10k). See
some qualitative results in Figure 5 that show that GPV-2 is able to use such
recently-introduced concepts when applying multiple skills. Although this is a
small-scale qualitative study, it shows that our approach of combining a GPV
and web-search data can lead to models that not only understand a wide range
of concepts and skills, but can also be efficiently adapted to new visual concepts
that become common in the world or that are needed due to the specialized
needs of a user. We think this is an exciting avenue for future work in GPVs.

7 Discussion

Extensions. GPV-2 achieves transfer of concepts from web data to skills, but
our results indicate that more work is needed, particularly for tasks like VQA or
localization, through new architectures or training protocols. GPV-2 supports
many tasks, but could be extended to handle more modalities (e.g., video) and
outputs (e.g., segmentation). Recent work shows promise in this regard [30],
potentially enabling transfer of web concepts to a wider range of tasks.
Conclusion. As the vision community builds progressively more general models,
identifying efficient ways of learning a large variety of skills and concepts is of
prime importance. Our work revisits the idea of webly-supervised learning in the
context of GPVs and shows that learning skills from task-datasets and concepts
from the web is an efficient and inexpensive option for concept expansion.
Acknowledgements. This work is partially supported by ONR award N00014-
21-1-2705.
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1 Qualitative results from GPV-2

Qualitative results from GPV-2 are shown in Figure 1. Despite the presence of
concepts that are not annotated in Coco (e.g, “Caterpillar”, “Lifejackets”, “Wil-
low”) GPV-2 is able to successfully perform classification, localization, caption-
ing, and visual questioning answering. Visualizations of predictions from GPV-2
on randomly selected examples from the Coco, DCE, and Web10k datasets
can be found in additional files in the supplementary materials.

Figure 2 contains an expanded version of Figure 4 from the paper showing
the predictions of GPV-2 when trained with and without Web10k. The model
trained without web data generates Coco concepts even when they are not
present in the image (e.g., writing a caption about a giraffe for a picture of a
jaguar, a brown-and-white bear for a red panda, or classifying a monkey as a
bear), while the model trained on web data is able to name the new concepts
correctly. For localization, we observe cases where the model trained without
Web10k struggles on new concepts (e.g., the without web model focuses on
cups or the background for the class “coffemaker”) while the model trained with
Web10k can localize them accurately.

∗ Equal contribution
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What is happening?

A man standing next to a row 
of motorcycles.

Describe this image.

A bunch of white plums 
hanging from a tree.

What is happening?

Three people pose in front
of a statue

What is happening?

A couple of young girls riding 
roller skates.

Caption this image.

A green caterpillar sitting
on top of a green leaf.

VQA

What are the skiers holding?

poles

What is the yellow food under 
the carrot?

rice

What is the shape of the stop 
sign?

octagon

What flag is in the background?

american

Captioning

Localization

Find chairs in this image. Find all instances of 
lifejackets.

Find dresses. Locate the pumpkins.

Where is the mirror?

above the sink

Locate people in the image.

What object is this?

willow

What is this object?

raccoon

What is this?

fountain

What is this thing?

sushi

What object is this?

motorcycle

Classification (cropped image)

Classification in Context

What object is this?

camel printer

What is this object? What is this?

bee pillow

What is this thing? What is this?

motorcycle

Fig. 1: Qualitative examples for GPV-2. Examples are from DCE val, except for
the last image in each row, which comes from Coco val. GPV-2 is able to use concepts
that do not appear in the Coco training data across all five skills.
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What is happening?

a red panda walking across
a lush green field.

a brown and white bear
walking across a field.

Describe this image.

a small blueberry muffin on a 
yellow plate.

a close up of a plate of food 
on a table

What is happening?

a woodpecker that is sitting
in a tree.

a bird perched on top of a 
tree branch.

What is happening?

a mannequin is standing
in a clothing store.

a woman's dress hanging
on a clothes line.

Caption this image.

a jaguar yawning while 
sitting on a tree branch.

a close up of a giraffe in a
tree branch

VQA

What color is the burrito?

brown
green

Who has black ears?

panda
bear

What is the stuffed toy?

monkey
bear

What is brown with black 
writing?

surfboard
sign

Captioning

Localization

Find jaguars in this image. Find all instances of 
coffeemakers.

Find balance beam. Locate the mule.

What is the type of dress 
women wearing?

sari
scarves

Locate cart in the image.

What object is this?

kettle
vase

What is this object?

hippopotamus
elephant

What is this?

sewing machine
dining table

What is this thing?

gondola
motorcycle

What object is this?

harpsichord
suitcase

Classification (cropped image)

Classification in Context

What object is this?

harp
giraffe

polar bear
sheep

What is this object? What is this?

guacamole
broccoli

woodpecker
stop sign

What is this thing? What is this?

caterpillar
cat

with web: 
without web:

with web: 

without web:

Describe this image.

a close up of a llama looking
at the camera.

a close up of a sheep with a 
rock background

What is happening?

a close up of a person
playing an accordion

a close up of a person
playing an instrument

Caption this image.

a pineapple that is growing
in a field.

a close up of a plant with 
leaves

What is happening?

a toddler wearing a hat
riding a tricycle.

a small child in a hat
riding a bike

Describe this image.

a black and white caterpillar 
on a green leaf.

a close up of a zebra on a 
plant

with web: 

without web:

with web: solid lines
without web: dotted lines

with web: 
without web:

with web: 
without web:

Fig. 2: Qualitative Examples: GPV-2 on DCE, with and without training on
WEB10K. The use of Web10k allows GPV-2 to understand more concepts across
all skills, especially for rare concepts such as “red panda” (captioning upper right).
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2 Classification re-calibration analysis

umbrella -0.2 tent -2.1

tent -2.1 umbrella -10.2

truck -4.7 house -10.9

table -7.7 van -12.4

couch -7.9 canoe -12.6

chair -8.2 truck -14.7

house -10.9 table -17.7

van -12.4 couch -17.9

canoe -12.6 chair -18.2

hot dog -0.9 pancake -4.3

sandwich -1.3 waffle -7.1

cake -2.0 hot dog -10.9

banana -2.8 sandwich -11.3

pancake -4.3 cake -12.0

pizza -4.6 banana -12.8

orange -6.1 pizza -14.6

bowl -6.8 orange -16.1

waffle -7.1 bowl -16.8

What is this?

Recalibration

What entity is this?

GPV-2 GPV-2

Recalibration

Fig. 3: Qualitative examples of re-calibration. This figure shows two CiC exam-
ples, where the left tables show GPV-2’s top 9 predictions and log-probability scores,
and the right table shows how the scores and rankings change after re-calibration. The
model has a strong preference for answers seen in the Coco classification data (black),
resulting in the model ranking Coco classes that are vaguely visually similar to the
image over the correct class (green). Re-calibration increases the relative score of the
non-Coco answers (green if correct, orange otherwise) allowing the model to get these
examples correct.

In this section, we analyze the classification re-calibration method from Sec. 4.
Table 1 shows a breakdown of how GPV-2 behaves on DCE classification with
and without re-calibration. Without re-calibration GPV-2 predicts a Coco cat-
egory for 56% of CiC examples and 65.7% of the CLS examples, even though only
14% of these examples belong to a Coco category, showing that the model has a
strong bias towards these categories. Adding re-calibration mostly mitigates this
bias and significantly boosts performance on non-Coco categories. It comes at
the cost of some performance on examples that belong to Coco categories, but
those examples are only a small portion of the data so performance is increased
by 12 points overall. These results show re-calibration is an important compo-
nent to allowing models to transfer concepts learned from non-classification data
to the classification skill. Qualitative examples are shown in Figure 3.

3 WEB10K questions and statistics

In this section, we provide more detail about how we construct question-answer
pairs from the web search data. For each query-image pair, we construct a ques-
tion that is answered by the noun from the query. For example, the question
“What entity is this?” with the answer “dog” for the query “brown dog”. For
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Table 1: GPV-2 accuracy on DCE classification with and without classi-
fier re-calibration (Cb). The Acc. column shows overall accuracy, Coco Acc. shows
accuracy on examples with labels in the 80 Coco categories, Other Acc. shows accu-
racy on other examples, and Coco Ans. shows how often the model predicts a Coco
category.

Task Cb Acc. Coco Acc. Other Acc. Coco Ans.

CiC - 39.4 92.0 30.8 56.4
CiC X 52.2 77.5 48.1 19.7
CLS - 34.0 85.7 25.5 65.7
CLS X 45.8 69.9 41.9 24.2

queries that contain a verb, we construct two additional questions that are an-
swered by the verb, one that specifies the noun and one that does not. For
example, “What action is happening?”, and “What is the dog doing?” with the
answer “running”, for the query “dog running”. For queries that contain adjec-
tives, we similarly construct two questions that are answered by the adjective,
one that specifies the noun and one that does not. To do this, we manually
map the adjectives to adjective types (e.g., “color” for “red”) and specify the
adjective type in the question. For example, “What is the color of this object?”
and “What is the color of this dog?” with the answer “brown”, for the query
“brown dog”. Using adjective types is important to because generic questions
like “What attributes does this object have?” will have many possible correct
answers. Finally, for all query-image pairs, we additionally construct a query
whose answer is the entire query. During evaluation, we compute the average ac-
curacy on questions where the is answer is a noun, verb or adjective, and report
the macro-average of those results to get an overall accuracy number.

The questions themselves are generated by a templating system to increase
their linguistic diversity. Table 2 shows the templates we use. For a given query
and question type we use these templates to generate a large number of possible
questions, and then select one at random to use as a prompt for the model.

Additional question types are possible. For example, contrastive questions
like “Is this sloth swimming or climbing?”, or questions that specify hypernyms
of the answer (obtained from sources such as WordNet) like “What kind of reptile
is this?”. We leave the generation of such questions, as well as their impact on
knowledge transfer of concepts between skills, to future work.

4 DCE sampling details

Fig. 4 shows the number of categories with various frequencies of occurrence in
the DCE val and test sets. Since nocaps [2] annotations are hidden behind an
evaluation server, we are unable to provide category counts for captioning. Note
that VQA has fewer concepts for higher frequencies than localization and cap-
tioning because of a lack of a sufficient number of question-answer annotations
that mention many of the OpenImages categories selected for DCE.
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Table 2: Templates for generating web prompts. Templates are grouped by
whether they have a noun, verb, or adjective answer. These templates are expanded by
substituting the all-caps words for any one of the substitute words specified below the
table, except ADJ TYPE which is replaced by the type of the adjective for questions
with adjective answers. For verb and adjective questions where the object is specified,
OBJ is replaced by the noun instead, and verb templates that do not contain OBJ are
not used.

Answer Type Prompts

Noun

What is DT OBJ?
What OBJ is this?
What OBJ is that?
Classify DT OBJ.
Specify DT OBJ.
Name DT OBJ.

Adjective
WH ADJ TYPE is DT OBJ?
What is the ADJ TYPE of DT OBJ?
CMD the ADJ TYPE of DT OBJ.

Verb

What is DT OBJ doing?
What action is DT OBJ taking?
What action is DT OBJ performing?
What action is DT OBJ carrying out?
What action is DT OBJ doing?
What activity is DT OBJ doing?
CMD the action being taken by DT OBJ.
CMD the activity DT OBJ is doing.
CMD what DT OBJ is doing.
What is being done?
WH action is being done?
WH activity is being done?
WH activity is this?
WH action is being taken?
CMD the activity being done.
CMD the action being done.
CMD the action being taken.
What is DT OBJ doing?

Entire Query
What is this?
What is that?

DT → the, this, that
OBJ → entity, object
WH → What, Which
CMD → Describe, State, Specify, Name
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Fig. 4: DCE val and test set category frequencies. Bars at > x indicate the
number of categories with at least x samples per category for each DCE skill with
publicly available annotations. DCE expands the scope of concept evaluation across
skills beyond Coco’s 80 concepts and maximizes representation of a large subset of mu-
tually exclusive concepts in OpenImages while avoiding over-representation of “head”
concepts (e.g. “man”, “woman”).

VQA sampling strategy. Co-occurrence of concepts in questions and an-
swers makes the sampling strategy for VQA more nuanced than the one followed
for Cls, CiC, and Loc. We iterate over the categories selected for DCE and ran-
domly sample up to 50 samples for each category. Unlike Cls/CiC and Loc, each
sample in VQA may consist of multiple categories. If k samples have already been
sampled for the ith category in the selected category list due to co-occurrence
with previous i − 1 categories, we only sample max(0, 50 − k) samples for the
ith category. This allows the “tail” categories from the original dataset to be
maximally sampled, while “head” categories are skipped if already sufficiently
represented in the annotations sampled thus far.
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Table 3: Number of parameters and FLOPs in GPV-2. Results are shown
for both when the image features are pre-computed (top), and when they have to be
generated from scratch (bottom).

Pre. Params VQA Cap Loc CLS CiC

X 224M 4.68G 6.31G 25.1G 2.63G 4.73G
- 370M 7.35T 7.38T 7.64T 6.62T 7.30T

5 GPV-2 efficiency metrics

We report efficiency metrics on GPV-2 when features must be extracted from
the input image from scratch using VinVL, and for when those features are
assumed to have been precomputed. We report parameter count and the number
of floating-point operations (FLOPs). Since the number of FLOPs depends on
the length of the input, the length of the target text, and the number of regions
in the image, we report the average number of FLOPs needed to process a
single example on 100 random examples from the training sets for each task. We
compute FLOPs using a pytorch profiler3 while computing the loss with a single
forward pass of the model. Results are shown in Table 3. We find captioning is
slow due to the long output sequences, classification is fast because the output
text is short and there tends to be fewer objects in the cropped classification
images, and detection requires generating per-box outputs so it requires the
most compute. If computing the features from scratch, the computational cost
is dominated by VinVL, which requires running a X152-FPN backbone and
computing features for a large number of proposal regions [89].

6 Experimental Details

Here we give a more detailed account of how the models are trained. We train
GPV-2 and VL-T5 using the Adam optimizer [38] with a batch size of 60 and
learning rate of 3e-4, β1 of 0.9, β1 of 0.999, ε of 1e-8, and a weight decay of
1e-4. The learning rate linearly warms up from 0 over 10% the training steps
and then linearly decreases back to 0. The web data is sharded into 4 parts,
and a different part of used for each epoch for the first four epochs. Then the
data is re-sharded into 4 new parts for the final 4 epochs. The data is stratified
so that the 6 supervised datasets (VQA, Cap, Loc, CLS, CiC and the current
web shard) are represented in approximately the same proportion in each batch.
During training, we use the cross-entropy loss of generating the output text for
all tasks besides localization. For localization, we compute relevance scores for
each box following the process in Sec. 4 and then train using the Hungarian-
matching loss from DETR [7] with two classes (one class for relevant and one

3 https://github.com/facebookresearch/fvcore/blob/main/docs/flop_count.md

https://github.com/facebookresearch/fvcore/blob/main/docs/flop_count.md
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for irrelevant) following [25]. We compute the scores on the in-domain validation
sets each epoch, and use the checkpoint with the highest average score across all
validation tasks. We experimented with using different learning rates for VL-T5
but found it had little impact on performance, so used the same learning rates
for both models. We use the prompts created by [25] for CLS, Loc and Cap,
and from our questions template for Web10k (See Sec. 3). For CiC we use the
CLS prompts. During testing, we generate text using beam search with a beam
size of 20, except for classification on DCE in which case we use the ranking
approach from Sec. 4.

7 Human Object Interaction experimental details

In this section, we provide more details about how GPV-2 is trained to perform
human-object interaction. Both stages of the two-pass process from Sec. 4 are
trained using the HOI-Det training set [8]. The first pass requires the model to
locate person bounding boxes in the image, GPV-2 is trained to do this by using
localization examples constructed from the HOI annotations. In particular, we
build examples by gathering all person-boxes in the annotations for an image
and then pruning duplicate boxes by applying non-maximum suppression with
a threshold of 0.7. The remaining boxes serve as ground truth for localization
examples with the prompt “Locate the people”.

The second pass requires the model to identify object interactions given a
person box. GPV-2 is trained using the same de-duplicated person boxes from
the HOI annotations. For each such person box, the input to the model is the
image with the prompt “What is this person doing?” and the input query box set
to be the person box. Target outputs are built by gathering all HOI annotations
for that input person box (annotations with person boxes that were pruned dur-
ing de-duplication are mapped to the person box with the highest IoU overlap).
This results in a set of object boxes labeled with HOI classes for each person
box. Those object boxes are aligned with the boxes found by the object detector
by finding the box with the highest IoU overlap with each ground truth object
box. During training, if no box from the object detector has at least a 0.5 overlap
with an object box, we manually add that object box to the regions extracted
by the detector so we can still train on it. The model is trained to generate a
text description of the HOI class for each box that was aligned with a ground
truth box (e.g., “riding the horse” for the HOI class riding+horse), or the text
“no interaction” for any box that was not aligned with a ground truth object. In
practice, we only train on a randomly selected half of the “no interaction” boxes
to reduce computational expense. If an object box is aligned to multiple ground
truth boxes, and therefore has multiple HOI class labels, we train the model to
generate all such labels with a high probability.

We train the model with the hyper-parameters specified in Sec. 6, but for 4
epochs with a batch of 48 and a learning rate of 1e-4. Since this task is intended
as a demonstration, we did not spend a lot of time optimizing this process and
think it could be further improved with additional effort.
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To evaluate the model, we first find boxes the model identifies from the
prompt “Locate the people” with a score of over 0.5. Then for each such box,
for each object box detected by the object detector, and for each HOI class, we
score the box pair and class with the log-probability of generating the class label
text from the object box when the person box is used as the input query box. In
practice, for a given person box, we prune object boxes that generate the text
“no interaction” with a high probability so we do not have to score a generation
for every class label with that box-pair. These scores are finally used to compute
the average precision metric from [8].

Finding HOIs for an image requires one forward pass with the encoder
for each person box, then one forward pass with the decoder for each person
box/object box pair to compute the “no interaction” probability, and then an-
other forward pass with the decoder for each person box, non-pruned object box,
and class label to get the class scores. This is made affordable by the fact the
class labels are short, and we are able to label the 10k test set in about an hour
using a single Quadro RTX 8000 GPU (after the VinVL image features have
been precomputed).

8 Zero-shot verb and attribute recognition

Table 4: Learning verbs and attributes from Web10k. We test verb and at-
tribute learning from Web10k by evaluating GPV-2 without further finetuning on
verb (imSitu) and attribute recognition (VAW) benchmarks.

imSitu (top-1 | top-5 acc.) VAW (mAP)
Model Test Seen Unsn Test Seen Unsn

GPV-2 10.0 | 23.0 15.6 | 33.4 2.5 | 9.1 53.2 56.9 52.0
GPV-2+web 16.7 | 34.7 27.5 | 54.4 2.2 | 8.3 52.4 56.2 51.3
Supervised 43.2 | 68.6 - - 68.3 - -

In addition to nouns, Web10k consists of compositions of nouns with verbs
and adjectives. To test the learning of verbs and attributes from Web10k, we
evaluate GPV-2 zero-shot on an action recognition dataset (ImSitu actions [86])
and an attribute recognition dataset (VAW [61]), see Table 4. For ImSitu actions
we prompt the model with “What are they doing?”. GPV-2 gets 34.7 top-
5 accuracy compared to 58.6 from the benchmark authors [86] employing a
supervised CNN+CRF approach and 68.6 from a recent supervised model[71]
that uses a specialized mixture-kernel attention graph neural network. For verbs
present in Web10k (the Seen column), Web10k training provides a significant
boost (54.4 from 33.4) showing successful transfer from web images to ImSitu
images. For VAW, we prompt the model with yes/no questions (e.g., “Is this
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object pink?”) along with the target object’s bounding box to get per-box multi-
label attribute results. We see no gains on VAW from Web10k, likely because the
model already learns these attributes from VinVL, CC, VQA, and Captioning
training data.

9 Performance on the GRIT benchmark

We submit GPV-2 to the Unrestricted track of the GRIT benchmark [26] and
achieve state-of-the-art performance at the time of submission. We re-train
GPV-2 to include RefCOCO+ [35] in the multi-tasking framework in order
to compete on the Referring Expressions Grounding task of the benchmark.
See Table 5 for performance results of the model on the test set. The results
use the acc.any.agg.<task> metric, which averages performance of the model
on “same” and “new” source data for each task, as defined in [26]. Note that
GPV-2 is trained on more data than GPV-1, and the VinVL backbone used
in GPV-2 is trained on OpenImages, which belongs to the GRIT “new” data
source (as allowed by the Unrestricted track), contributing to its performance.

The GRIT benchmark website4 contains additional information on the data
and the models’ ability to generalize to new data sources and concepts, robust-
ness to image distortions, and calibration.

Table 5: Performance on GRIT benchmark, unrestricted test set. GPV-2
competes on four of the seven benchmark tasks: Object Categorization (cat), Object
Localization (loc), VQA (vqa) and Referring Expression Grounding (ref). It cannot
compete on Segmentation (seg), Person Keypoint Detection (kp), or Surface Normal
Estimation (sn). The aggregation takes the average of all seven tasks, assigning 0 to
the tasks that models cannot perform. GPV-1 here has not been trained on referring
expressions, or with web data.

Model Detector Backbone cat loc vqa ref seg kp sn All

GPV-1 DETR, trained on COCO 33.2 42.7 49.8 26.8 - - - 21.8
GPV-2 VinVL, trained on COCO, VG, 55.1 53.6 63.2 52.1 - - - 32.0

Objects365 and OpenImages

10 Comparison between the GPV-2 and GPV-1
architectures when trained on the same data

We now provide an additional comparison between GPV-2 and GPV-1 in Table
6 using the same training data and detector backbone (frozen DETR), trained
only on COCO-SCE. This shows that GPV-2 provides gains over GPV-1 on

4 https://grit-benchmark.org/

https://grit-benchmark.org/
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3 tasks purely due to its architecture. In addition, adding web data training to
GPV-2 (no other changes) provides further improvements on 2 tasks in-domain.
Row [c] corresponds to Table 3 in the main paper.

Table 6: Direct comparison between GPV-2 and GPV-1. Performance on
COCO-SCE when trained on the same data and using the same detector backbone.

Model Web data VQA Cap Loc Cls

[a] GPV-1 no web 56.4 88.3 63.4 71.5
[b] GPV-2 no web 59.6 88.4 62.2 73.1

[c] GPV-2 with web 59.9 89.2 62.2 73.0

11 Results on all nocaps splits for DCE captioning

See Table 7 for results of the GPVs on all splits of the nocaps dataset [2]:
in-domain, near-domain, out-of-domain, and all. The out-of-domain results are
reported in the main paper, as our focus is on learning novel concepts.

Table 7: Full DCE Captioning results. Training on web data improves performance
for all three GPVs, for all splits — even in-domain, which focuses on Coco concepts.
GPV-2 achieves the highest performance by a large margin.

Model Web data in near out all

[a] GPV-1 no web 69.1 51.4 25.8 49.1
[b] GPV-120 no web 64.4 47.5 23.1 45.3
[c] GPV-120 with web 65.7 51.2 28.6 49.0

[d] VL-T5 no web 70.3 55.9 31.6 53.4
[e] VL-T5 with web 72.0 60.4 45.0 59.1

[f] GPV-2 no web 82.8 79.4 65.4 77.3
[g] GPV-2 with web 85.4 82.6 72.5 81.2

12 Biases in web data

We employ several measures to ensure Web10k is clean including the “isFam-
ilyFriendly” filter on Bing, removing inappropriate words per a popular black-
list [1], and conducting manual spot checks. However, the entire dataset has
not been human-curated, so we cannot guarantee it is free from objectionable
imagery. It is important to be aware that search results are known to reflect hu-
man biases and stereotypes [58,34], for example, most of our images for “soccer
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player” are of men. Coco, our main source of supervision, also suffers from these
kinds of biases [90] so we do not recommend using the models in this paper in
production settings.
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