Skip to main content

Point Cloud Domain Adaptation via Masked Local 3D Structure Prediction

  • Conference paper
  • First Online:
Book cover Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13663))

Included in the following conference series:

Abstract

The superiority of deep learning based point cloud representations relies on large-scale labeled datasets, while the annotation of point clouds is notoriously expensive. One of the most effective solutions is to transfer the knowledge from existing labeled source data to unlabeled target data. However, domain bias typically hinders knowledge transfer and leads to accuracy degradation. In this paper, we propose a Masked Local Structure Prediction (MLSP) method to encode target data. Along with the supervised learning on the source domain, our method enables models to embed source and target data in a shared feature space. Specifically, we predict masked local structure via estimating point cardinality, position and normal. Our design philosophies lie in: 1) Point cardinality reflects basic structures (e.g., line, edge and plane) that are invariant to specific domains. 2) Predicting point positions in masked areas generalizes learned representations so that they are robust to incompletion-caused domain bias. 3) Point normal is generated by neighbors and thus robust to noise across domains. We conduct experiments on shape classification and semantic segmentation with different transfer permutations and the results demonstrate the effectiveness of our method. Code is available at https://github.com/VITA-Group/MLSP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Achituve, I., Maron, H., Chechik, G.: Self-supervised learning for domain adaptation on point clouds. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. pp. 123–133 (2021)

    Google Scholar 

  2. Chang, A.X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z., Savarese, S., Savva, M., Song, S., Su, H., et al.: Shapenet: An information-rich 3d model repository. arXiv preprint arXiv:1512.03012 (2015)

  3. Chen, X., Wang, S., Long, M., Wang, J.: Transferability vs. discriminability: Batch spectral penalization for adversarial domain adaptation. In: International conference on machine learning. pp. 1081–1090. PMLR (2019)

    Google Scholar 

  4. Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Nießner, M.: Scannet: Richly-annotated 3d reconstructions of indoor scenes. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 5828–5839 (2017)

    Google Scholar 

  5. Deng, Z., Luo, Y., Zhu, J.: Cluster alignment with a teacher for unsupervised domain adaptation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 9944–9953 (2019)

    Google Scholar 

  6. Fan, H., Su, H., Guibas, L.J.: A point set generation network for 3d object reconstruction from a single image. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 605–613 (2017)

    Google Scholar 

  7. Fan, H., Chang, X., Zhang, W., Cheng, Y., Sun, Y., Kankanhalli, M.: Self-supervised global-local structure modeling for point cloud domain adaptation with reliable voted pseudo labels. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 6377–6386 (2022)

    Google Scholar 

  8. Fan, H., Liu, P., Xu, M., Yang, Y.: Unsupervised visual representation learning via dual-level progressive similar instance selection. IEEE Transactions on Cybernetic (2021). https://doi.org/10.1109/TCYB.2021.3054978

    Article  Google Scholar 

  9. Fan, H., Yu, X., Ding, Y., Yang, Y., Kankanhalli, M.: Pstnet: Point spatio-temporal convolution on point cloud sequences. In: International Conference on Learning Representations (2020)

    Google Scholar 

  10. Fan, H., Zheng, L., Yan, C., Yang, Y.: Unsupervised person re-identification: Clustering and fine-tuning. ACM Trans. Multim. Comput. Commun. Appl. 14(4), 83:1–83:18 (2018). DOI: 10.1145/3243316

    Google Scholar 

  11. Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., Marchand, M., Lempitsky, V.: Domain-adversarial training of neural networks. The journal of machine learning research 17(1), 2096–2030 (2016)

    MathSciNet  MATH  Google Scholar 

  12. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014)

    Google Scholar 

  13. Hassani, K., Haley, M.: Unsupervised multi-task feature learning on point clouds. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 8160–8171 (2019)

    Google Scholar 

  14. Jiang, L., Meng, D., Yu, S., Lan, Z., Shan, S., Hauptmann, A.G.: Self-paced learning with diversity. In: Advances in Neural Information Processing Systems. pp. 2078–2086 (2014)

    Google Scholar 

  15. Kang, G., Jiang, L., Yang, Y., Hauptmann, A.G.: Contrastive adaptation network for unsupervised domain adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 4893–4902 (2019)

    Google Scholar 

  16. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  17. Kumar, M.P., Packer, B., Koller, D.: Self-paced learning for latent variable models. In: Advances in Neural Information Processing Systems. pp. 1189–1197 (2010)

    Google Scholar 

  18. Lee, C.Y., Batra, T., Baig, M.H., Ulbricht, D.: Sliced wasserstein discrepancy for unsupervised domain adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 10285–10295 (2019)

    Google Scholar 

  19. Li, Y., Bu, R., Sun, M., Wu, W., Di, X., Chen, B.: Pointcnn: Convolution on x-transformed points. Advances in neural information processing systems 31 (2018)

    Google Scholar 

  20. Liang, H., Zhang, Q., Dai, P., Lu, J.: Boosting the generalization capability in cross-domain few-shot learning via noise-enhanced supervised autoencoder. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 9424–9434 (2021)

    Google Scholar 

  21. Liang, H., Jiang, C., Feng, D., Chen, X., Xu, H., Liang, X., Zhang, W., Li, Z., Van Gool, L.: Exploring geometry-aware contrast and clustering harmonization for self-supervised 3d object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 3293–3302 (2021)

    Google Scholar 

  22. Liu, X., Zhang, F., Hou, Z., Mian, L., Wang, Z., Zhang, J., Tang, J.: Self-supervised learning: Generative or contrastive. IEEE Transactions on Knowledge and Data Engineering (2021)

    Google Scholar 

  23. Long, M., Cao, Y., Cao, Z., Wang, J., Jordan, M.I.: Transferable representation learning with deep adaptation networks. IEEE transactions on pattern analysis and machine intelligence 41(12), 3071–3085 (2018)

    Article  Google Scholar 

  24. Luo, Z., Cai, Z., Zhou, C., Zhang, G., Zhao, H., Yi, S., Lu, S., Li, H., Zhang, S., Liu, Z.: Unsupervised domain adaptive 3d detection with multi-level consistency. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 8866–8875 (2021)

    Google Scholar 

  25. Van der Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008)

    Google Scholar 

  26. Pan, Y., Yao, T., Li, Y., Wang, Y., Ngo, C.W., Mei, T.: Transferrable prototypical networks for unsupervised domain adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 2239–2247 (2019)

    Google Scholar 

  27. Pinheiro, P.O.: Unsupervised domain adaptation with similarity learning. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 8004–8013 (2018)

    Google Scholar 

  28. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: Deep learning on point sets for 3d classification and segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 652–660 (2017)

    Google Scholar 

  29. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: Deep hierarchical feature learning on point sets in a metric space. Advances in neural information processing systems 30 (2017)

    Google Scholar 

  30. Qin, C., You, H., Wang, L., Kuo, C.C.J., Fu, Y.: Pointdan: A multi-scale 3d domain adaption network for point cloud representation. Advances in Neural Information Processing Systems 32 (2019)

    Google Scholar 

  31. Rakotosaona, M.J., La Barbera, V., Guerrero, P., Mitra, N.J., Ovsjanikov, M.: Pointcleannet: Learning to denoise and remove outliers from dense point clouds. In: Computer Graphics Forum. vol. 39, pp. 185–203. Wiley Online Library (2020)

    Google Scholar 

  32. Rozantsev, A., Salzmann, M., Fua, P.: Beyond sharing weights for deep domain adaptation. IEEE transactions on pattern analysis and machine intelligence 41(4), 801–814 (2018)

    Article  Google Scholar 

  33. Saito, K., Ushiku, Y., Harada, T., Saenko, K.: Adversarial dropout regularization. arXiv preprint arXiv:1711.01575 (2017)

  34. Saito, K., Watanabe, K., Ushiku, Y., Harada, T.: Maximum classifier discrepancy for unsupervised domain adaptation. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 3723–3732 (2018)

    Google Scholar 

  35. Sauder, J., Sievers, B.: Self-supervised deep learning on point clouds by reconstructing space. Advances in Neural Information Processing Systems 32 (2019)

    Google Scholar 

  36. Shen, Y., Yang, Y., Yan, M., Wang, H., Zheng, Y., Guibas, L.J.: Domain adaptation on point clouds via geometry-aware implicits. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 7223–7232 (2022)

    Google Scholar 

  37. Tang, L., Chen, K., Wu, C., Hong, Y., Jia, K., Yang, Z.X.: Improving semantic analysis on point clouds via auxiliary supervision of local geometric priors. IEEE Transactions on Cybernetics (2020)

    Google Scholar 

  38. Thabet, A., Alwassel, H., Ghanem, B.: Mortonnet: Self-supervised learning of local features in 3d point clouds. arXiv preprint arXiv:1904.00230 (2019)

  39. Thomas, H., Qi, C.R., Deschaud, J.E., Marcotegui, B., Goulette, F., Guibas, L.J.: Kpconv: Flexible and deformable convolution for point clouds. In: Proceedings of the IEEE/CVF international conference on computer vision. pp. 6411–6420 (2019)

    Google Scholar 

  40. Tsai, Y.H., Hung, W.C., Schulter, S., Sohn, K., Yang, M.H., Chandraker, M.: Learning to adapt structured output space for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 7472–7481 (2018)

    Google Scholar 

  41. Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain adaptation. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 7167–7176 (2017)

    Google Scholar 

  42. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic graph cnn for learning on point clouds. Acm Transactions On Graphics (tog) 38(5), 1–12 (2019)

    Article  Google Scholar 

  43. Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., Xiao, J.: 3d shapenets: A deep representation for volumetric shapes. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 1912–1920 (2015)

    Google Scholar 

  44. Xie, S., Zheng, Z., Chen, L., Chen, C.: Learning semantic representations for unsupervised domain adaptation. In: International conference on machine learning. pp. 5423–5432. PMLR (2018)

    Google Scholar 

  45. Zhang, L., Zhu, Z.: Unsupervised feature learning for point cloud by contrasting and clustering with graph convolutional neural network. arXiv preprint arXiv:1904.12359 (2019)

  46. Zhao, H., Jiang, L., Jia, J., Torr, P.H., Koltun, V.: Point transformer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 16259–16268 (2021)

    Google Scholar 

  47. Zou, L., Tang, H., Chen, K., Jia, K.: Geometry-aware self-training for unsupervised domain adaptation on object point clouds. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 6403–6412 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanxue Liang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 566 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liang, H. et al. (2022). Point Cloud Domain Adaptation via Masked Local 3D Structure Prediction. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13663. Springer, Cham. https://doi.org/10.1007/978-3-031-20062-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20062-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20061-8

  • Online ISBN: 978-3-031-20062-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics