Abstract
The superiority of deep learning based point cloud representations relies on large-scale labeled datasets, while the annotation of point clouds is notoriously expensive. One of the most effective solutions is to transfer the knowledge from existing labeled source data to unlabeled target data. However, domain bias typically hinders knowledge transfer and leads to accuracy degradation. In this paper, we propose a Masked Local Structure Prediction (MLSP) method to encode target data. Along with the supervised learning on the source domain, our method enables models to embed source and target data in a shared feature space. Specifically, we predict masked local structure via estimating point cardinality, position and normal. Our design philosophies lie in: 1) Point cardinality reflects basic structures (e.g., line, edge and plane) that are invariant to specific domains. 2) Predicting point positions in masked areas generalizes learned representations so that they are robust to incompletion-caused domain bias. 3) Point normal is generated by neighbors and thus robust to noise across domains. We conduct experiments on shape classification and semantic segmentation with different transfer permutations and the results demonstrate the effectiveness of our method. Code is available at https://github.com/VITA-Group/MLSP.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Achituve, I., Maron, H., Chechik, G.: Self-supervised learning for domain adaptation on point clouds. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. pp. 123–133 (2021)
Chang, A.X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z., Savarese, S., Savva, M., Song, S., Su, H., et al.: Shapenet: An information-rich 3d model repository. arXiv preprint arXiv:1512.03012 (2015)
Chen, X., Wang, S., Long, M., Wang, J.: Transferability vs. discriminability: Batch spectral penalization for adversarial domain adaptation. In: International conference on machine learning. pp. 1081–1090. PMLR (2019)
Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Nießner, M.: Scannet: Richly-annotated 3d reconstructions of indoor scenes. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 5828–5839 (2017)
Deng, Z., Luo, Y., Zhu, J.: Cluster alignment with a teacher for unsupervised domain adaptation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 9944–9953 (2019)
Fan, H., Su, H., Guibas, L.J.: A point set generation network for 3d object reconstruction from a single image. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 605–613 (2017)
Fan, H., Chang, X., Zhang, W., Cheng, Y., Sun, Y., Kankanhalli, M.: Self-supervised global-local structure modeling for point cloud domain adaptation with reliable voted pseudo labels. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 6377–6386 (2022)
Fan, H., Liu, P., Xu, M., Yang, Y.: Unsupervised visual representation learning via dual-level progressive similar instance selection. IEEE Transactions on Cybernetic (2021). https://doi.org/10.1109/TCYB.2021.3054978
Fan, H., Yu, X., Ding, Y., Yang, Y., Kankanhalli, M.: Pstnet: Point spatio-temporal convolution on point cloud sequences. In: International Conference on Learning Representations (2020)
Fan, H., Zheng, L., Yan, C., Yang, Y.: Unsupervised person re-identification: Clustering and fine-tuning. ACM Trans. Multim. Comput. Commun. Appl. 14(4), 83:1–83:18 (2018). DOI: 10.1145/3243316
Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., Marchand, M., Lempitsky, V.: Domain-adversarial training of neural networks. The journal of machine learning research 17(1), 2096–2030 (2016)
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural information processing systems 27 (2014)
Hassani, K., Haley, M.: Unsupervised multi-task feature learning on point clouds. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 8160–8171 (2019)
Jiang, L., Meng, D., Yu, S., Lan, Z., Shan, S., Hauptmann, A.G.: Self-paced learning with diversity. In: Advances in Neural Information Processing Systems. pp. 2078–2086 (2014)
Kang, G., Jiang, L., Yang, Y., Hauptmann, A.G.: Contrastive adaptation network for unsupervised domain adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 4893–4902 (2019)
Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Kumar, M.P., Packer, B., Koller, D.: Self-paced learning for latent variable models. In: Advances in Neural Information Processing Systems. pp. 1189–1197 (2010)
Lee, C.Y., Batra, T., Baig, M.H., Ulbricht, D.: Sliced wasserstein discrepancy for unsupervised domain adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 10285–10295 (2019)
Li, Y., Bu, R., Sun, M., Wu, W., Di, X., Chen, B.: Pointcnn: Convolution on x-transformed points. Advances in neural information processing systems 31 (2018)
Liang, H., Zhang, Q., Dai, P., Lu, J.: Boosting the generalization capability in cross-domain few-shot learning via noise-enhanced supervised autoencoder. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 9424–9434 (2021)
Liang, H., Jiang, C., Feng, D., Chen, X., Xu, H., Liang, X., Zhang, W., Li, Z., Van Gool, L.: Exploring geometry-aware contrast and clustering harmonization for self-supervised 3d object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 3293–3302 (2021)
Liu, X., Zhang, F., Hou, Z., Mian, L., Wang, Z., Zhang, J., Tang, J.: Self-supervised learning: Generative or contrastive. IEEE Transactions on Knowledge and Data Engineering (2021)
Long, M., Cao, Y., Cao, Z., Wang, J., Jordan, M.I.: Transferable representation learning with deep adaptation networks. IEEE transactions on pattern analysis and machine intelligence 41(12), 3071–3085 (2018)
Luo, Z., Cai, Z., Zhou, C., Zhang, G., Zhao, H., Yi, S., Lu, S., Li, H., Zhang, S., Liu, Z.: Unsupervised domain adaptive 3d detection with multi-level consistency. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 8866–8875 (2021)
Van der Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008)
Pan, Y., Yao, T., Li, Y., Wang, Y., Ngo, C.W., Mei, T.: Transferrable prototypical networks for unsupervised domain adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 2239–2247 (2019)
Pinheiro, P.O.: Unsupervised domain adaptation with similarity learning. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 8004–8013 (2018)
Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: Deep learning on point sets for 3d classification and segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 652–660 (2017)
Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: Deep hierarchical feature learning on point sets in a metric space. Advances in neural information processing systems 30 (2017)
Qin, C., You, H., Wang, L., Kuo, C.C.J., Fu, Y.: Pointdan: A multi-scale 3d domain adaption network for point cloud representation. Advances in Neural Information Processing Systems 32 (2019)
Rakotosaona, M.J., La Barbera, V., Guerrero, P., Mitra, N.J., Ovsjanikov, M.: Pointcleannet: Learning to denoise and remove outliers from dense point clouds. In: Computer Graphics Forum. vol. 39, pp. 185–203. Wiley Online Library (2020)
Rozantsev, A., Salzmann, M., Fua, P.: Beyond sharing weights for deep domain adaptation. IEEE transactions on pattern analysis and machine intelligence 41(4), 801–814 (2018)
Saito, K., Ushiku, Y., Harada, T., Saenko, K.: Adversarial dropout regularization. arXiv preprint arXiv:1711.01575 (2017)
Saito, K., Watanabe, K., Ushiku, Y., Harada, T.: Maximum classifier discrepancy for unsupervised domain adaptation. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 3723–3732 (2018)
Sauder, J., Sievers, B.: Self-supervised deep learning on point clouds by reconstructing space. Advances in Neural Information Processing Systems 32 (2019)
Shen, Y., Yang, Y., Yan, M., Wang, H., Zheng, Y., Guibas, L.J.: Domain adaptation on point clouds via geometry-aware implicits. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 7223–7232 (2022)
Tang, L., Chen, K., Wu, C., Hong, Y., Jia, K., Yang, Z.X.: Improving semantic analysis on point clouds via auxiliary supervision of local geometric priors. IEEE Transactions on Cybernetics (2020)
Thabet, A., Alwassel, H., Ghanem, B.: Mortonnet: Self-supervised learning of local features in 3d point clouds. arXiv preprint arXiv:1904.00230 (2019)
Thomas, H., Qi, C.R., Deschaud, J.E., Marcotegui, B., Goulette, F., Guibas, L.J.: Kpconv: Flexible and deformable convolution for point clouds. In: Proceedings of the IEEE/CVF international conference on computer vision. pp. 6411–6420 (2019)
Tsai, Y.H., Hung, W.C., Schulter, S., Sohn, K., Yang, M.H., Chandraker, M.: Learning to adapt structured output space for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 7472–7481 (2018)
Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain adaptation. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 7167–7176 (2017)
Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic graph cnn for learning on point clouds. Acm Transactions On Graphics (tog) 38(5), 1–12 (2019)
Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., Xiao, J.: 3d shapenets: A deep representation for volumetric shapes. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 1912–1920 (2015)
Xie, S., Zheng, Z., Chen, L., Chen, C.: Learning semantic representations for unsupervised domain adaptation. In: International conference on machine learning. pp. 5423–5432. PMLR (2018)
Zhang, L., Zhu, Z.: Unsupervised feature learning for point cloud by contrasting and clustering with graph convolutional neural network. arXiv preprint arXiv:1904.12359 (2019)
Zhao, H., Jiang, L., Jia, J., Torr, P.H., Koltun, V.: Point transformer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 16259–16268 (2021)
Zou, L., Tang, H., Chen, K., Jia, K.: Geometry-aware self-training for unsupervised domain adaptation on object point clouds. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 6403–6412 (2021)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Liang, H. et al. (2022). Point Cloud Domain Adaptation via Masked Local 3D Structure Prediction. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13663. Springer, Cham. https://doi.org/10.1007/978-3-031-20062-5_10
Download citation
DOI: https://doi.org/10.1007/978-3-031-20062-5_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20061-8
Online ISBN: 978-3-031-20062-5
eBook Packages: Computer ScienceComputer Science (R0)