Abstract
Adversarial attacks provide a good way to study the robustness of deep learning models. One category of methods in transfer-based black-box attack utilizes several image transformation operations to improve the transferability of adversarial examples, which is effective, but fails to take the specific characteristic of the input image into consideration. In this work, we propose a novel architecture, called Adaptive Image Transformation Learner (AITL), which incorporates different image transformation operations into a unified framework to further improve the transferability of adversarial examples. Unlike the fixed combinational transformations used in existing works, our elaborately designed transformation learner adaptively selects the most effective combination of image transformations specific to the input image. Extensive experiments on ImageNet demonstrate that our method significantly improves the attack success rates on both normally trained models and defense models under various settings.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Athalye, A., Carlini, N., Wagner, D.A.: Obfuscated gradients give a false sense of security: circumventing defenses to adversarial examples. In: ICML, vol. 80, pp. 274–283 (2018)
Athalye, A., Engstrom, L., Ilyas, A., Kwok, K.: Synthesizing robust adversarial examples. In: ICML, vol. 80, pp. 284–293 (2018)
Chen, L., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Semantic image segmentation with deep convolutional nets and fully connected CRFs. In: ICLR (2015)
Chen, L., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE TPAMI 40(4), 834–848 (2018)
Chen, L., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587 (2017)
Chen, P., Zhang, H., Sharma, Y., Yi, J., Hsieh, C.: ZOO: zeroth order optimization based black-box attacks to deep neural networks without training substitute models. In: Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security, AISec@CCS 2017, Dallas, TX, USA, 3 November 2017, pp. 15–26 (2017)
Cheng, S., Dong, Y., Pang, T., Su, H., Zhu, J.: Improving black-box adversarial attacks with a transfer-based prior. In: NeurIPS, pp. 10932–10942 (2019)
Croce, F., Hein, M.: Provable robustness against all adversarial \(l_p\)-perturbations for \(p\ge 1\). In: ICLR (2020)
Croce, F., Hein, M.: Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks. In: ICML, vol. 119, pp. 2206–2216 (2020)
Cubuk, E.D., Zoph, B., Mané, D., Vasudevan, V., Le, Q.V.: AutoAugment: learning augmentation strategies from data. In: CVPR, pp. 113–123 (2019)
Cubuk, E.D., Zoph, B., Shlens, J., Le, Q.: RandAugment: practical automated data augmentation with a reduced search space. In: NeurIPS (2020)
Deng, J., Guo, J., Xue, N., Zafeiriou, S.: ArcFace: additive angular margin loss for deep face recognition. In: CVPR, pp. 4690–4699 (2019)
Dong, Y., Deng, Z., Pang, T., Zhu, J., Su, H.: Adversarial distributional training for robust deep learning. In: NeurIPS (2020)
Dong, Y., et al.: Boosting adversarial attacks with momentum. In: CVPR, pp. 9185–9193 (2018)
Dong, Y., Pang, T., Su, H., Zhu, J.: Evading defenses to transferable adversarial examples by translation-invariant attacks. In: CVPR, pp. 4312–4321 (2019)
Du, J., Zhang, H., Zhou, J.T., Yang, Y., Feng, J.: Query-efficient meta attack to deep neural networks. In: ICLR (2020)
Duan, R., Chen, Y., Niu, D., Yang, Y., Qin, A.K., He, Y.: AdvDrop: adversarial attack to DNNs by dropping information. In: ICCV, pp. 7506–7515 (2021)
Eykholt, K., et al.: Robust physical-world attacks on deep learning visual classification. In: CVPR, pp. 1625–1634 (2018)
Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. In: ICLR (2015)
Guo, C., Rana, M., Cissé, M., van der Maaten, L.: Countering adversarial images using input transformations. In: ICLR (2018)
Guo, Y., Li, Q., Chen, H.: Backpropagating linearly improves transferability of adversarial examples. In: NeurIPS (2020)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)
He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 630–645. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_38
Ilyas, A., Engstrom, L., Athalye, A., Lin, J.: Black-box adversarial attacks with limited queries and information. In: ICML, vol. 80, pp. 2142–2151 (2018)
Jia, J., Cao, X., Wang, B., Gong, N.Z.: Certified robustness for top-k predictions against adversarial perturbations via randomized smoothing. In: ICLR (2020)
Jia, X., Wei, X., Cao, X., Foroosh, H.: ComDefend: an efficient image compression model to defend adversarial examples. In: CVPR, pp. 6084–6092 (2019)
Katz, G., Barrett, C.W., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an efficient SMT solver for verifying deep neural networks. In: CAV, vol. 10426, pp. 97–117 (2017)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)
Kurakin, A., Goodfellow, I.J., Bengio, S.: Adversarial machine learning at scale. In: ICLR (2017)
Li, M., Deng, C., Li, T., Yan, J., Gao, X., Huang, H.: Towards transferable targeted attack. In: CVPR, pp. 638–646 (2020)
Li, Y., Li, L., Wang, L., Zhang, T., Gong, B.: NATTACK: learning the distributions of adversarial examples for an improved black-box attack on deep neural networks. In: ICML, vol. 97, pp. 3866–3876 (2019)
Liao, F., Liang, M., Dong, Y., Pang, T., Hu, X., Zhu, J.: Defense against adversarial attacks using high-level representation guided denoiser. In: CVPR, pp. 1778–1787 (2018)
Lin, J., Song, C., He, K., Wang, L., Hopcroft, J.E.: Nesterov accelerated gradient and scale invariance for adversarial attacks. In: ICLR (2020)
Liu, W., Wen, Y., Yu, Z., Li, M., Raj, B., Song, L.: SphereFace: deep hypersphere embedding for face recognition. In: CVPR, pp. 6738–6746 (2017)
Liu, Z., Liu, Q., Liu, T., Xu, N., Lin, X., Wang, Y., Wen, W.: Feature distillation: DNN-oriented JPEG compression against adversarial examples. In: CVPR, pp. 860–868 (2019)
Ma, C., Chen, L., Yong, J.: Simulating unknown target models for query-efficient black-box attacks. In: CVPR, pp. 11835–11844 (2021)
Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks. In: ICLR (2018)
Moosavi-Dezfooli, S., Fawzi, A., Frossard, P.: DeepFool: a simple and accurate method to fool deep neural networks. In: CVPR, pp. 2574–2582 (2016)
Naseer, M., Khan, S.H., Hayat, M., Khan, F.S., Porikli, F.: A self-supervised approach for adversarial robustness. In: CVPR, pp. 259–268 (2020)
Pang, T., Yang, X., Dong, Y., Xu, T., Zhu, J., Su, H.: Boosting adversarial training with hypersphere embedding. In: NeurIPS (2020)
Rozsa, A., Rudd, E.M., Boult, T.E.: Adversarial diversity and hard positive generation. In: CVPRW, pp. 410–417 (2016)
Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. IJCV 115(3), 211–252 (2015)
Sutskever, I., Martens, J., Dahl, G.E., Hinton, G.E.: On the importance of initialization and momentum in deep learning. In: ICML, vol. 28, pp. 1139–1147 (2013)
Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-V4, inception-ResNet and the impact of residual connections on learning. In: AAAI, pp. 4278–4284 (2017)
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: CVPR, pp. 2818–2826 (2016)
Szegedy, C., et al.: Intriguing properties of neural networks. In: ICLR (2014)
Tramèr, F., Carlini, N., Brendel, W., Madry, A.: On adaptive attacks to adversarial example defenses. In: NeurIPS (2020)
Tramèr, F., Kurakin, A., Papernot, N., Goodfellow, I.J., Boneh, D., McDaniel, P.D.: Ensemble adversarial training: Attacks and defenses. In: ICLR (2018)
Uesato, J., O’Donoghue, B., Kohli, P., van den Oord, A.: Adversarial risk and the dangers of evaluating against weak attacks. In: ICML, vol. 80, pp. 5032–5041 (2018)
Wang, H., et al.: CosFace: Large margin cosine loss for deep face recognition. In: CVPR, pp. 5265–5274 (2018)
Wang, X., He, K.: Enhancing the transferability of adversarial attacks through variance tuning. In: CVPR, pp. 1924–1933 (2021)
Wang, X., He, X., Wang, J., He, K.: Admix: enhancing the transferability of adversarial attacks. arXiv preprint arXiv:2102.00436 (2021)
Wang, X., Lin, J., Hu, H., Wang, J., He, K.: Boosting adversarial transferability through enhanced momentum. arXiv preprint arXiv:2103.10609 (2021)
Wang, Y., Ma, X., Bailey, J., Yi, J., Zhou, B., Gu, Q.: On the convergence and robustness of adversarial training. In: ICML, vol. 97, pp. 6586–6595 (2019)
Wong, E., Rice, L., Kolter, J.Z.: Fast is better than free: revisiting adversarial training. In: ICLR (2020)
Wu, D., Wang, Y., Xia, S., Bailey, J., Ma, X.: Skip connections matter: on the transferability of adversarial examples generated with ResNets. In: ICLR (2020)
Wu, D., Xia, S., Wang, Y.: Adversarial weight perturbation helps robust generalization. In: NeurIPS (2020)
Wu, W., Su, Y., Lyu, M.R., King, I.: Improving the transferability of adversarial samples with adversarial transformations. In: CVPR, pp. 9024–9033 (2021)
Xiao, K.Y., Tjeng, V., Shafiullah, N.M.M., Madry, A.: Training for faster adversarial robustness verification via inducing ReLU stability. In: ICLR (2019)
Xie, C., Wang, J., Zhang, Z., Ren, Z., Yuille, A.L.: Mitigating adversarial effects through randomization. In: ICLR (2018)
Xie, C., et al.: Improving transferability of adversarial examples with input diversity. In: CVPR, pp. 2730–2739 (2019)
Xu, W., Evans, D., Qi, Y.: Feature squeezing: detecting adversarial examples in deep neural networks. In: NDSS (2018)
Yang, B., Zhang, H., Zhang, Y., Xu, K., Wang, J.: Adversarial example generation with adabelief optimizer and crop invariance. arXiv preprint arXiv:2102.03726 (2021)
Yuan, H., Chu, Q., Zhu, F., Zhao, R., Liu, B., Yu, N.H.: AutoMA: towards automatic model augmentation for transferable adversarial attacks. IEEE TMM (2021)
Zhang, H., Cissé, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: Beyond empirical risk minimization. In: ICLR (2018)
Zhuang, J., et al.: AdaBelief optimizer: adapting stepsizes by the belief in observed gradients. In: NeurIPS (2020)
Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures for scalable image recognition. In: CVPR, pp. 8697–8710 (2018)
Zou, J., Pan, Z., Qiu, J., Duan, Y., Liu, X., Pan, Y.: Making adversarial examples more transferable and indistinguishable. arXiv preprint arXiv:2007.03838 (2020)
Acknowledgments
This work is partially supported by National Key R &D Program of China (No. 2017YFA0700800), National Natural Science Foundation of China (Nos. 62176251 and Nos. 61976219).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Yuan, Z., Zhang, J., Shan, S. (2022). Adaptive Image Transformations for Transfer-Based Adversarial Attack. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13665. Springer, Cham. https://doi.org/10.1007/978-3-031-20065-6_1
Download citation
DOI: https://doi.org/10.1007/978-3-031-20065-6_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20064-9
Online ISBN: 978-3-031-20065-6
eBook Packages: Computer ScienceComputer Science (R0)