Abstract
Synthesizing natural interactions between virtual humans and their 3D environments is critical for numerous applications, such as computer games and AR/VR experiences. Recent methods mainly focus on modeling geometric relations between 3D environments and humans, where the high-level semantics of the human-scene interaction has frequently been ignored. Our goal is to synthesize humans interacting with a given 3D scene controlled by high-level semantic specifications as pairs of action categories and object instances, e.g., “sit on the chair”. The key challenge of incorporating interaction semantics into the generation framework is to learn a joint representation that effectively captures heterogeneous information, including human body articulation, 3D object geometry, and the intent of the interaction. To address this challenge, we design a novel transformer-based generative model, in which the articulated 3D human body surface points and 3D objects are jointly encoded in a unified latent space, and the semantics of the interaction between the human and objects are embedded via positional encoding. Furthermore, inspired by the compositional nature of interactions that humans can simultaneously interact with multiple objects, we define interaction semantics as the composition of varying numbers of atomic action-object pairs. Our proposed generative model can naturally incorporate varying numbers of atomic interactions, which enables synthesizing compositional human-scene interactions without requiring composite interaction data. We extend the PROX dataset with interaction semantic labels and scene instance segmentation to evaluate our method and demonstrate that our method can generate realistic human-scene interactions with semantic control. Our perceptual study shows that our synthesized virtual humans can naturally interact with 3D scenes, considerably outperforming existing methods. We name our method COINS, for COmpositional INteraction Synthesis with Semantic Control. Code and data are available at https://github.com/zkf1997/COINS.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ahn, H., Ha, T., Choi, Y., Yoo, H., Oh, S.: Text2action: generative adversarial synthesis from language to action. In: Proceedings of ICRA. IEEE (2018)
Ahuja, C., Morency, L.P.: Language2pose: natural language grounded pose forecasting. In: Proceedings of 3DV. IEEE (2019)
Akhter, I., Black, M.J.: Pose-conditioned joint angle limits for 3d human pose reconstruction. In: Proceedings of CVPR (2015)
Engelmann, F., Rematas, K., Leibe, B., Ferrari, V.: From points to multi-object 3D reconstruction. In: Proceedings of CVPR (2021)
Gkioxari, G., Girshick, R., Dollár, P., He, K.: Detecting and recognizing human-object interactions. In: Proceedings of CVPR (2018)
Grabner, H., Gall, J., Van Gool, L.: What makes a chair a chair? In: Proceedings of CVPR. IEEE (2011)
Gupta, A., Kembhavi, A., Davis, L.S.: Observing human-object interactions: using spatial and functional compatibility for recognition. IEEE Trans. Pattern Anal. Mach. Intell. 31, 1775–1789 (2009)
Gupta, A., Satkin, S., Efros, A.A., Hebert, M.: From 3d scene geometry to human workspace. In: Proceedings of CVPR. IEEE (2011)
Hassan, M., et al.: Stochastic scene-aware motion prediction. In: Proceedings of ICCV (2021)
Hassan, M., Choutas, V., Tzionas, D., Black, M.J.: Resolving 3D human pose ambiguities with 3D scene constraints. In: Proceedings of ICCV (2019)
Hassan, M., Ghosh, P., Tesch, J., Tzionas, D., Black, M.J.: Populating 3D scenes by learning human-scene interaction. In: Proceedings of CVPR (2021)
Hu, R., et al.: Predictive and generative neural networks for object functionality. arXiv preprint. arXiv:2006.15520 (2020)
Ji, S., Xu, W., Yang, M., Yu, K.: 3d convolutional neural networks for human action recognition. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 221–231 (2012)
Kay, W., et al.: The kinetics human action video dataset. arXiv preprint. arXiv:1705.06950 (2017)
Kim, V.G., Chaudhuri, S., Guibas, L.J., Funkhouser, T.: Shape2pose: human-centric shape analysis. In: ACM Transactions on Graphics, (Proceedings SIGGRAPH) (2014)
Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint. arXiv:1312.6114 (2013)
Li, X., Liu, S., Kim, K., Wang, X., Yang, M.H., Kautz, J.: Putting humans in a scene: learning affordance in 3d indoor environments. In: Proceedings of CVPR (2019)
Lieber, R., Stekauer, P.: The Oxford Handbook of Compounding (2011)
Mahmood, N., Ghorbani, N., Troje, N.F., Pons-Moll, G., Black, M.J.: AMASS: archive of motion capture as surface shapes. In: Proceedings of ICCV (2019)
Mandery, C., Terlemez, O., Do, M., Vahrenkamp, N., Asfour, T.: The kit whole-body human motion database. In: Proceedings of ICAR (2015)
Mineshima, K., Martínez-Gómez, P., Miyao, Y., Bekki, D.: Higher-order logical inference with compositional semantics. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing (2015)
Mitchell, J., Lapata, M.: Vector-based models of semantic composition. In: Proceedings of ACL (2008)
Pavlakos, G., et al.: Expressive body capture: 3d hands, face, and body from a single image. In: Proceedings of CVPR (2019)
Petrovich, M., Black, M.J., Varol, G.: Action-conditioned 3d human motion synthesis with transformer vae. In: Proceedings of ICCV (2021)
Plag, I.: Word-formation in English. Cambridge University Press, Cambridge (2018)
Punnakkal, A.R., Chandrasekaran, A., Athanasiou, N., Quiros-Ramirez, A., Black, M.J.: BABEL: bodies, action and behavior with english labels. In: Proceedings of CVPR (2021)
Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: deep hierarchical feature learning on point sets in a metric space. arXiv preprint. arXiv:1706.02413 (2017)
Ranjan, A., Bolkart, T., Sanyal, S., Black, M.J.: Generating 3D faces using convolutional mesh autoencoders. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 725–741. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_43
Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error propagation. California Univ San Diego La Jolla Inst for Cognitive Science. Technical report (1985)
Savva, M., Chang, A.X., Hanrahan, P., Fisher, M., Nießner, M.: Scenegrok: inferring action maps in 3d environments. In: ACM Transactions on Graphics (TOG), (Proceedings SIGGRAPH), vol. 33, no. 6, pp. 1–10 (2014)
Savva, M., Chang, A.X., Hanrahan, P., Fisher, M., Nießner, M.: PiGraphs: learning interaction snapshots from observations. In: ACM Transactions on Graphics, (Proceedings SIGGRAPH), vol. 35, no. 4 (2016)
Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recognition in videos. In: Proceedings of NeurIPS (2014)
Sohn, K., Lee, H., Yan, X.: Learning structured output representation using deep conditional generative models. In: Proceedings of NeurIPS (2015)
Starke, S., Zhang, H., Komura, T., Saito, J.: Neural state machine for character-scene interactions. In: ACM Transactions Graphics (ACM SIGGRAPH Asia) (2019)
Tevet, G., Gordon, B., Hertz, A., Bermano, A.H., Cohen-Or, D.: Motionclip: exposing human motion generation to clip space. arXiv preprint. arXiv:2203.08063 (2022)
De la Torre, F., Hodgins, J., Bargteil, A., Martin, X., Macey, J., Collado, A., Beltran, P.: Guide to the carnegie mellon university multimodal activity (cmu-mmac) database (2009)
Tran, D., Wang, H., Torresani, L., Ray, J., LeCun, Y., Paluri, M.: A closer look at spatiotemporal convolutions for action recognition. In: Proceedings of CVPR (2018)
Troje, N.F.: Decomposing biological motion: a framework for analysis and synthesis of human gait patterns. J. Vis. 2, 371–387 (2002)
Vaswani, A., et al.: Attention is all you need. In: Proceedings of NeurIPS (2017)
Wang, J., Xu, H., Xu, J., Liu, S., Wang, X.: Synthesizing long-term 3d human motion and interaction in 3d scenes. In: Proceedings of CVPR (2021)
Wang, J., Rong, Y., Liu, J., Yan, S., Lin, D., Dai, B.: Towards diverse and natural scene-aware 3d human motion synthesis. In: Proceedings of CVPR (2022)
Yao, B., Fei-Fei, L.: Modeling mutual context of object and human pose in human-object interaction activities. In: Proceedings of CVPR (2010)
Yin, D., Meng, T., Chang, K.W.: Sentibert: a transferable transformer-based architecture for compositional sentiment semantics. arXiv preprint. arXiv:2005.04114 (2020)
Zhang, S., Zhang, Y., Bogo, F., Marc, P., Tang, S.: Learning motion priors for 4d human body capture in 3d scenes. In: Proceedings of ICCV (2021)
Zhang, S., Zhang, Y., Ma, Q., Black, M.J., Tang, S.: PLACE: Proximity learning of articulation and contact in 3D environments. In: Proceedings of 3DV (2020)
Zhang, Y., Hassan, M., Neumann, H., Black, M.J., Tang, S.: Generating 3d people in scenes without people. In: Proceedings of CVPR (2020)
Acknowledgements
We sincerely acknowledge the anonymous reviewers for their insightful suggestions. We thank Francis Engelmann for help with scene segmentation and proofreading, and Siwei Zhang for providing body fitting results. This work was supported by the SNF grant 200021 204840
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Zhao, K., Wang, S., Zhang, Y., Beeler, T., Tang, S. (2022). Compositional Human-Scene Interaction Synthesis with Semantic Control. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13666. Springer, Cham. https://doi.org/10.1007/978-3-031-20068-7_18
Download citation
DOI: https://doi.org/10.1007/978-3-031-20068-7_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20067-0
Online ISBN: 978-3-031-20068-7
eBook Packages: Computer ScienceComputer Science (R0)