Skip to main content

Projective Parallel Single-Pixel Imaging to Overcome Global Illumination in 3D Structure Light Scanning

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13666))

Included in the following conference series:

Abstract

We consider robust and efficient 3D structure light scanning method in situations dominated by global illumination. One typical way of solving this problem is via the analysis of 4D light transport coefficients (LTCs), which contains complete information for a projector-camera pair, and is a 4D data set. However, the process of capturing LTCs generally takes long time. We present projective parallel single-pixel imaging (pPSI), wherein the 4D LTCs are reduced to multiple projection functions to facilitate a highly efficient data capture process. We introduce local maximum constraint, which provides necessary condition for the location of correspondence matching points when projection functions are captured. Local slice extension method is introduced to further accelerate the capture of projection functions. We study the influence of scan ratio in local slice extension method on the accuracy of the correspondence matching points, and conclude that partial scanning is enough for satisfactory results. Our discussions and experiments include three typical kinds of global illuminations: inter-reflections, subsurface scattering, and step edge fringe aliasing. The proposed method is validated in several challenging scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, T., Lensch, H.P., Fuchs, C., Seidel, H.P.: Polarization and phase-shifting for 3D scanning of translucent objects. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2007)

    Google Scholar 

  2. Chen, T., Seidel, H.P., Lensch, H.P.: Modulated phase-shifting for 3D scanning. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2008)

    Google Scholar 

  3. Chiba, N., Hashimoto, K.: 3D measurement by estimating homogeneous light transport (HLT) matrix. In: 2017 IEEE International Conference on Mechatronics and Automation (ICMA), pp. 1763–1768. IEEE (2017)

    Google Scholar 

  4. Clark, J., Trucco, E., Wolff, L.B.: Using light polarization in laser scanning. Image Vis. Comput. 15(2), 107–117 (1997)

    Article  Google Scholar 

  5. Debevec, P., Hawkins, T., Tchou, C., Duiker, H.P., Sarokin, W., Sagar, M.: Acquiring the reflectance field of a human face. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 145–156 (2000)

    Google Scholar 

  6. Dizeu, F.B.D., Boisvert, J., Drouin, M.A., Godin, G., Rivard, M., Lamouche, G.: Frequency shift triangulation: a robust fringe projection technique for 3D shape acquisition in the presence of strong interreflections. In: 2019 International Conference on 3D Vision (3DV), pp. 194–203. IEEE (2019)

    Google Scholar 

  7. Garg, G., Talvala, E.V., Levoy, M., Lensch, H.P.: Symmetric photography: exploiting data-sparseness in reflectance fields. In: Rendering Techniques, pp. 251–262 (2006)

    Google Scholar 

  8. Gorthi, S.S., Rastogi, P.: Fringe projection techniques: whither we are? Opt. Lasers Eng. 48(ARTICLE), 133–140 (2010)

    Google Scholar 

  9. Gu, J., Kobayashi, T., Gupta, M., Nayar, S.K.: Multiplexed illumination for scene recovery in the presence of global illumination. In: International Conference on Computer Vision (2011)

    Google Scholar 

  10. Gupta, M., Nayar, S.K.: Micro phase shifting. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 813–820. IEEE (2012)

    Google Scholar 

  11. Hu, Q., Harding, K.G., Du, X., Hamilton, D.: Shiny parts measurement using color separation. Proc. SPIE Int. Soc. Opt. Eng. 6000, 125–132 (2005)

    Google Scholar 

  12. Inokuchi, S.: Range imaging system for 3-D object recognition. In: ICPR 1984, pp. 806–808 (1984)

    Google Scholar 

  13. Jiang, H., Li, Y., Zhao, H., Li, X., Xu, Y.: Parallel single-pixel imaging: a general method for direct-global separation and 3d shape reconstruction under strong global illumination. Int. J. Comput. Vision 129(4), 1060–1086 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jiang, H., Yan, Y., Li, X., Zhao, H., Li, Y., Xu, Y.: Separation of interreflections based on parallel single-pixel imaging. Opt. Express 29(16), 26150–26164 (2021)

    Article  Google Scholar 

  15. Jiang, H., Yang, Q., Li, X., Zhao, H., Xu, Y.: 3D shape measurement in the presence of strong interreflections by using single-pixel imaging in a camera-projector system. Opt. Express 29(3), 3609–3620 (2021)

    Article  Google Scholar 

  16. Jiang, H., Zhai, H., Xu, Y., Li, X., Zhao, H.: 3D shape measurement of translucent objects based on fourier single-pixel imaging in projector-camera system. Opt. Express 27(23), 33564–33574 (2019)

    Article  Google Scholar 

  17. Jiang, H., Zhou, Y., Zhao, H.: Using adaptive regional projection to measure parts with strong reflection. In: AOPC 2017: 3D Measurement Technology for Intelligent Manufacturing, vol. 10458, p. 104581A. International Society for Optics and Photonics (2017)

    Google Scholar 

  18. Kaiser, J.F.: Nonrecursive digital filter design using the i_0-sinh window function. In: Proceedings of 1974 IEEE International Symposium on Circuits & Systems, San Francisco DA, April, pp. 20–23 (1974)

    Google Scholar 

  19. Li, Y., Jiang, H., Zhao, H., Li, X., Wang, Y., Xu, Y.: Compressive parallel single-pixel imaging for efficient 3D shape measurement in the presence of strong interreflections by using a sampling fourier strategy. Opt. Express 29(16), 25032–25047 (2021)

    Article  Google Scholar 

  20. Masselus, V., Peers, P., Dutre, P., Willems, Y.D.: Relighting with 4D incident light fields. ACM Trans. Graph. 22(3), 613–620 (2003)

    Article  Google Scholar 

  21. Nayar, S.K., Krishnan, G., Grossberg, M.D., Raskar, R.: Fast separation of direct and global components of a scene using high frequency illumination. In: ACM SIGGRAPH 2006 Papers, pp. 935–944 (2006)

    Google Scholar 

  22. O’Toole, M., Mather, J., Kutulakos, K.N.: 3D shape and indirect appearance by structured light transport. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3246–3253 (2014)

    Google Scholar 

  23. O’Toole, M., Raskar, R., Kutulakos, K.N.: Primal-dual coding to probe light transport. ACM Trans. Graph. 31(4), 39–1 (2012)

    Google Scholar 

  24. Park, J., Kak, A.: 3D modeling of optically challenging objects. IEEE Trans. Visual Comput. Graphics 14(2), 246–262 (2008)

    Article  Google Scholar 

  25. Peers, P., et al.: Compressive light transport sensing. ACM Trans. Graph. (TOG) 28(1), 1–18 (2009)

    Article  MathSciNet  Google Scholar 

  26. Sen, P., et al.: Dual photography. ACM Trans. Graph. 24(3), 745–755 (2005)

    Article  Google Scholar 

  27. Sen, P., Darabi, S.: Compressive dual photography. In: Computer Graphics Forum, vol. 28, pp. 609–618. Wiley Online Library (2009)

    Google Scholar 

  28. Wang, Y., Zhao, H., Jiang, H., Li, X., Li, Y., Xu, Y.: Paraxial 3D shape measurement using parallel single-pixel imaging. Opt. Express 29(19), 30543–30557 (2021)

    Article  Google Scholar 

  29. Xu, Y., Aliaga, D.G.: Robust pixel classification for 3D modeling with structured light. In: Proceedings of Graphics Interface 2007, pp. 233–240 (2007)

    Google Scholar 

  30. Xu, Y., Aliaga, D.G.: An adaptive correspondence algorithm for modeling scenes with strong interreflections. IEEE Trans. Visual Comput. Graphics 15(3), 465–480 (2009)

    Article  Google Scholar 

  31. Zhang, Y., Lau, D., Wipf, D.: Sparse multi-path corrections in fringe projection profilometry. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13344–13353 (2021)

    Google Scholar 

  32. Zhang, Y., Lau, D.L., Yu, Y.: Causes and corrections for bimodal multi-path scanning with structured light. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4431–4439 (2019)

    Google Scholar 

  33. Zhao, H., Xu, Y., Jiang, H., Li, X.: 3D shape measurement in the presence of strong interreflections by epipolar imaging and regional fringe projection. Opt. Express 26(6), 7117–7131 (2018)

    Article  Google Scholar 

  34. Zuo, C., Feng, S., Huang, L., Tao, T., Yin, W., Chen, Q.: Phase shifting algorithms for fringe projection profilometry: a review. Opt. Lasers Eng. 109, 23–59 (2018)

    Article  Google Scholar 

  35. Zuo, C., Huang, L., Zhang, M., Chen, Q., Asundi, A.: Temporal phase unwrapping algorithms for fringe projection profilometry: a comparative review. Opt. Lasers Eng. 85, 84–103 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongzhi Jiang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2447 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Y., Zhao, H., Jiang, H., Li, X. (2022). Projective Parallel Single-Pixel Imaging to Overcome Global Illumination in 3D Structure Light Scanning. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13666. Springer, Cham. https://doi.org/10.1007/978-3-031-20068-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20068-7_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20067-0

  • Online ISBN: 978-3-031-20068-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics