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Abstract. We propose a trainable Image Signal Processing (ISP) frame-
work that produces DSLR quality images given RAW images captured
by a smartphone. To address the color misalignments between training
image pairs, we employ a color-conditional ISP network and optimize
a novel parametric color mapping between each input RAW and refer-
ence DSLR image. During inference, we predict the target color image
by designing a color prediction network with efficient Global Context
Transformer modules. The latter effectively leverage global information
to learn consistent color and tone mappings. We further propose a ro-
bust masked aligned loss to identify and discard regions with inaccu-
rate motion estimation during training. Lastly, we introduce the ISP in
the Wild (ISPW) dataset, consisting of weakly paired phone RAW and
DSLR sRGB images. We extensively evaluate our method, setting a new
state-of-the-art on two datasets.

1 Introduction

An Image Signal Processing (ISP) pipeline is characterized by a sequence of low-
level vision operations that are performed to convert RAW data from the camera
sensor to sSRGB images. Each camera has an inherent ISP that is implemented
on the device through hand-designed operations. With the advent of mobile pho-
tography, smartphones have become the primary source of photo capture due to
their portability. However, their strict size constraints enforces small sensor sizes
and compact lenses, which inevitably leads to higher sensor noise compared to
DSLR cameras. In this work, we therefore strive towards mitigating the hard-
ware constraints in mobile photography by designing a learnable alternative to
the ISP pipeline, utilizing DSLR quality sRGB images as reference.

Compared to standard image enhancement and restoration tasks, learning
the ISP mapping introduces new fundamental challenges, which require careful
attention. In the paired learning setting, a primary issue is that the color map-
ping between the input RAW image and the DSLR sRGB image depends on
partially unobserved factors, such as camera parameters and the environmental
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(a) Phone RAW  (b) LiteISP-Net [26]. (c) Ours (d) DSLR sRGB

Fig.1: Our learnable ISP generates a DSLR quality sRGB image from RAW
data captured by a smartphone camera. Qur approach recovers rich details and
produces colors that are more consistent with the DSLR sRGB ground-truth,
compared to LiteISPNet (best performing competing method). Shown are the
full resolution results on our ISP in the Wild (ISPW) dataset. Best viewed with
ZOOM.

conditions. Further, the image pairs for training, each consisting of a smartphone
RAW and a DSLR sRGB image, inevitably contain substantial spatial misalign-
ment that greatly complicate the learning. Despite recent efforts [9,5,26], the
aforementioned issues remain central in the strive towards a fully learning-based
ISP solution.

In this work, we propose a learnable ISP framework that can be effectively
trained in the wild, using only weakly paired DSLR reference images with un-
known and varying color and spatial misalignments. Our approach is composed
of an ISP network that maps the input phone RAW to a DSLR quality output.
Contrary to much previous works, we further condition the network on a target
color image. This allows our ISP network to fully focus on the denoising and
demosaicing tasks, without having to guess the unknown color transformation.
To allow the target color image to be used during training, we propose a flexible
and efficient parametric color mapping. Our color mapping between the input
RAW and output DSLR sRGB image is individually optimized for every train-
ing image pair. The resulting mapping is then applied to the input RAW image
to generate the target color image for conditioning. Importantly, this approach
effectively mitigates information leakage from the target ground truth into the
network, while achieving a faithful color transformation.

In order to achieve the target color image during inference, we further propose
a dedicated target DSLR color prediction network, which solely takes the RAW
phone image as input. To predict an accurate target color image, exploiting both
local and global cues in an image is essential. While local information capture
high-frequency details, global information is important in order to achieve a glob-
ally consistent and realistic color mapping across the entire image. We achieve
the latter by designing an efficient Global Context Transformer block, which
aggregates global color information into a compact latent array through cross-
attention operations. This both alleviates the quadratic complexity of standard
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transformer modules, and importantly enables a variable input size. Finally, we
address the problem of misaligned ground-truth by introducing a robust masked
aligned objective for training our ISP framework.

To aid in extensive benchmarking and evaluation of RAW-to-sRGB mapping

approaches for weakly paired data, we introduce the ISP in the Wild (ISPW)
dataset. This dataset comprises of pairs of RAW sensor data from a recent
smartphone camera and sRGB images taken from a high-end DSLR camera.
Our dataset consists of 200 captured 10+ MegaPixel image pairs, resulting in
over 28,000 crops of size 320 x 320 for training, validation, and test. We perform
extensive ablative and state-of-the-art experiments on the Zurich RAW-to-RGB
(ZRR) dataset [9] and our ISPW dataset. Our approach outperforms all previ-
ous approaches by a significant margin, setting a new state-of-the-art on both
datasets. A visual comparison with the best competing method is provided in
Fig. 1.
Contributions: Our main contributions are summarized as: (i) We propose a
color conditional trainable ISP in the wild. (ii) We propose a color prediction
network that integrates a global-context transformer module for efficient and
globally coherent prediction of the target colors. (iii) We condition on color
information from the reference image during training by introducing a flexible
parametric color mapping, which is efficiently optimized for a single RAW-sRGB
training pair. (iv) We employ a loss masking strategy for robust learning under
alignment errors. (v) We introduce the ISPW dataset for learning the camera
ISP in the wild.

2 Related Work

Despite the successes of deep-learning for low-level vision tasks, its application
to camera ISP in the wild has been much less explored. Among the existing
methods, CycleISP [24] and Invertible-ISP [23] propose a full camera imaging
pipeline in the forward and reverse directions. These methods learn the ISP
in a well aligned setting, where the RAW-sRGB training pairs originate from
the same device. For RAW-to-sRGB mapping in the wild, the goal of the AIM
2020 challenge [9] on learned image processing pipeline was to map the orig-
inal low-quality RAW images captured by a phone to a DSLR sRGB image.
In particular, the CNN approaches inspired by the Multi-level Wavelet CNNs
(MWCNN) [14] obtained the best results. Among the MWCNN-based methods
both, MW-ISPNet [9] and AWNet [5] employ different variations of a U-Net for
generation of appealing sSRGB images.

More recently, LiteISPNet [26] propose an aligned loss by explicitly calculat-
ing the optical flow between the predicted DSLR image and the ground truth.
The idea of the aligned loss using optical flow in case of misaligned data was first
used in DeepBurstSR [3| for burst super-resolution. Prior to DeepBurstSR, other
efforts to handle misaligned data include a contextual bilateral loss (CoBi) [25]
or primarily relying on a deep perceptual loss function, as in MW-ISPNet [9]
and AWNet [5].
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Fig.2: An Overview of our learnable ISP framework: We learn a color condi-
tional framework F(z, ¢) for RAW-to-sRGB mapping in the wild (Sec. 3.1). The
estimated target color image ¢ is achieved by our color mapping ¢ = C(z,c¢)
(Sec. 3.3), which maps the raw input z to the color space of ¢. During training ¢
is given by the downsampled ground truth. During inference, the DSLR-quality
color content is predicted by the dedicated global attention based color predic-
tion network G(z), using only the raw image x as input (Sec. 3.2). Finally, for
robust learning of the ISP in the presence of even substantial misalignments (see
Fig. 1), we propose a masked aligned loss (Sec. 3.4), which is robust to errors in
the computed optical flow.

Another bottleneck for the field has been the dearth of datasets for camera
ISP learning and benchmarking. The datasets MIT5K [4], DND [17], SIDD [1]
and Zoom-to-Learn [25] capture several images from the same device under dif-
ferent settings. Moreover, [4,17,1] collect images in very controlled settings, where
accurate alignment is possible. They are therefore unfit for designing approaches
for ISP in the wild. Further, DPED [8] provides RGB images from different de-
vices but does not contain RAW images and thus cannot be used for our task of
designing and training the full ISP pipeline. In contrast, we aim to learn the ISP
from a constrained device, i.e. smartphone, using high-quality DSLR images.
The BurstSR dataset [3] is designed for the burst super-resolution task. Most
related is the ZRR dataset [9]. Our ISPW dataset contains RAW images col-
lected via a more modern smartphone. Additionally, our ISPW dataset contains
important meta information, such as the ISO and exposure settings, that can
further be exploited by the community for controllable and conditional learning
of the RAW-to-sRGB mapping for weakly paired data.

3 Method

In this work, we strive towards a fully deep learning based ISP module, which

predicts a high-quality sSRGB image y € R3**#*W given the RAW image = €
H w . . . .

R**% X% captured by a mobile phone camera. Specifically, our aim is to learn
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such a module from a set of weakly paired training samples {(z*,y*)}x. Our
approach is illustrated in Fig. 2. It is comprised of a color conditional restoration
network F(z,¢) (Sec. 3.1). The color information ¢ is provided by a dedicated
color prediction network G(z) during inference (Sec. 3.2) and by the ground
truth DSLR sRGB during training. To avoid the network from cheating during
training, we propose a color mapping approach (Sec. 3.3) that maps the RAW
sensor data to the target DSLR sRGB. During inference, our color mapping
module works as a regularizer for our color predictor network in case of spurious
inaccurate local colors predicted. Further, there also exists a spatial misalignment
between the noisy mobile sensor data and the target DSLR sRGB image. To
handle misalignment between the RAW-sRGB pairs, we propose a robust masked
aligned loss (Sec. 3.4) that also takes into account the inaccuracies that are
introduced during the alignment operation.

3.1 ISP Network

As motivated in Sec. 1, there exists an unknown color mapping between the
input 2% and the target 3*, which further varies between each capture (z*,y")
due to changes in the parameters and environment. Modelling the ISP pipeline
in the wild as a single feed-forward network y = F(z) can therefore prove detri-
mental to the learning of an accurate RAW-to-sRGB mapping as no fixed global
color mapping exists. In order to learn effectively the RAW-to-sRGB mapping
in these conditions, we propose a network y = F(z,¢) that is conditioned on
the desired output color information ¢. During training, the color information
is extracted from the RAW-sRGB pair using a flexible parametric formulation,
which is detailed in Sec. 3.3. This allows us to capture a rich color mapping model
from a single training pair (z*,y*), while preventing the network F to cheat.
Additionally, our dedicated RAW pre-processing network discussed in Sec. 3.3
mitigates the ill-effects that noise in the RAW sensor data has on our color map-
ping estimation module. During inference, the color information ¢ is predicted
by a dedicated color predictor network G(x) (Sec. 3.2) and the color mapping
module (Sec. 3.3).

3.2 Color Prediction

In this section, we propose a low-resolution reference color prediction network
¢ = G(z). This network aims to predict a low-resolution image ¢ with the color
content and dynamic range of the target DSLR camera. It is then the task of our
ISP network F, to predict a detailed high-resolution image, conditioned on this
color information. The measured colors and intensities depend on the camera
parameters during capture, along with various other environmental factors, such
as the properties of the illuminants in the scene. These conditions vary on a
capture to capture basis. Hence, a simple feedforward network fails to capture
the DSLR sRGB color accurately.
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Fig. 3: Illustration of the full Color Prediction Network (a) with its Global Con-
text Transformer module (b).

Color prediction network: To circumvent this drawback of feed-forward nets,
we design an encoder-decoder based color prediction network (Fig. 3a).

¢ =G(x) = Dpsrr (Ephone()). (1)

Here, Dpgpr is the DSLR decoding network that predicts a low resolution tar-
get SRGB color. Predicting the target SRGB colors in low resolution makes the
learning easier and leads to a faster convergence. We employ a U-Net inspired
architecture (Fig. 3a) for our encoder-decoder. This is because U-Net [18] effec-
tively expands the receptive field by integrating pooling operations and exploit-
ing contextual information at different scales using skip connections. Further, a
U-Net is relatively insensitive to small misalignments in the image due to the
low-resolution of core features, achieved by successive pooling operations. Our
U-Net encoder Epphone exploits local and global cues by integrating a successive
convolutional layer and an efficient global context transformer.
Global Context Transformer: For target color prediction, capturing a global
context is pivotal since color in one patch of the image can be related to the
color in a spatially distant patch of the same image. Hence, attending to differ-
ent patches in the image may prove beneficial for predicting an accurate target
color. Using standard transformers [20] for global attention is a viable option.
However, its quadratic computational complexity w.r.t. the number of patches
in the image/feature map makes it unsuitable for our color prediction network.
Furthermore, our network needs to be able to process an image of arbitrary res-
olution, which brings further challenges to a standard transformer architecture.
We therefore design our Global Context Transformer block by taking in-
spiration from the Perceiver [11,10] architecture. Specifically, we perform cross
attention operations between an auxiliary latent space Z’ € RE*¢ and the input
feature map I; € H; x W; x ID;, followed by self attention layers on Z’. Here, I; is
extracted from the U-Net encoder at level [. The latent space contains K tokens
of dimension C, as is initialized by a learned constant array Z € RE¥*C. The
majority of the computation thus happens on Z’. This reduces the complexity of
the attention operations from quadratic to linear in the input size, and crucially
enables a variable input image size.
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Fig. 3b details the architecture of our global context block. It comprises mul-

tiple cross and self-attention layers on the fixed-size auxiliary latent array Z’.
Hence, decoupling the network depth from the input size. Through the global
attention operations, the learned latent arrays Z’ can encode color transforma-
tions. The final decoder module then maps information encapsulated in Z’ to
the output array O through cross attention with the input query ¢;. We in-
tegrate our Global Context Transformer block in the contracting path of our
color prediction module after each convolutional block (Fig. 3a). This aids in
exploiting local cues (convolutional block) as well as global cues (Global-context
transformer block) while remaining computationally efficient.
Reconstruction branch: In addition to the DSLR specific decoder, we also
employ a decoder Dphone for reconstructing the RAW input x such that £ =
Dphone(Ephone(2)) (Fig. 3a). Employing a RAW reconstruction decoder equips
our color prediction framework to learn an optimal phone-specific embedding
Ephone () that encodes various meta-information that was not provided with the
RAW data for reconstructing the RAW input z. Hence, intuitively our DSLR-
specific decoder learns a mapping from the phone ISP to the DSLR ISP.

3.3 Color Mapping Module

In this section we introduce our approach for estimating the color transforma-
tion between the RAW input = and a target color sSRGB image c. For this, we
design a module é = C(x, ¢) that estimates a color mapping between a single pair
(z,¢), and applies it to . The result represents the RAW image z transformed
according to the target color space in c. Our approach is particularly important
during training, when c is derived from the ground-truth image y through down-
sampling and alignment. It supplies our ISP network, conditioned on ¢, with the
correct color transformation between the pair (z,y) while preventing informa-
tion leakage from the ground-truth y. During inference, C works as a regularizer
for our color predictor network (1) in case of spurious inaccurate local colors
predicted.
Pre-processing network: Real world training image pairs, apart from being
weakly paired in terms of alignment, pose many other challenges. In particular,
the RAW sensor data from the phone is prone to noise due to the limited sensor
size, along with other interference from the environment. The noise may be
signal-dependent or signal-independent. A noisy source image x inhibits the
performance of the color mapping significantly. Hence, removing noise from the
RAW data is pivotal. In this direction, we design a pre-processing module for
removing noise from the RAW data, thereby aiding our color mapping module.
Our RAW pre-processing network P aims to retrieve the clean source image
Z given a noisy RAW z,

P(z) =7 =12"—n(x'), where 2’ = I'(x). (2)

Here, 1 is our noise estimation net and is implemented as a CNN with residual
connections. For our framework, z’ is a processed version of the mobile RAW



8 Tripathi et al.

sensor data x. We obtain z’ by neglecting one of the green channels in z and
normalizing the resulting 3-channel image between [0, 1] uniformly. To further
reduce the non-linearities in the color mapping, we apply a constant approxi-
mate gamma correction to obtain the final processed image z’. The processing
operation I'(+) is detailed in the Appendix (Sec. B.2).

Color mapping: Formulating our color mapping scheme, we define a set of B
equally spaced bins between the range of values in each channel of the source
image 7 (Eq. 2). The b** bin centroid for color channel j is denoted as kj. The
goal is to map the image ¥ to the target color image as,

& = "l (A% + BY), (3)

b=1

using a learned affine transformation Agii + BZ for each bin b. Here, Ai €
R!'*3 and By € R are the parameters of the affine map, while #; € R? (Eq. 2)
denotes the color values at pixel 4 after the pre-processing network. The result
¢ is the mapped intensity at channel j and location i. The soft bin assignment
weights in (3) are calculated as @7, = Softg\/[ax(—Hj‘:g — kJ||?/T), where, T is a

temperature parameter. Hence, our color mapping (3) can be seen as an attention
mechanism, with the source image attending to the learned values through the
bin centroids. The motivation of learning an affine transformation instead of a
fixed numeric value for each bin centroid is providing each bin more expressive
power leading to better color mapping even with less number of bins.

In (3), the parameters (A7, Bj) of the affine mapping are learned using only
a single pair (Z,c). This is performed by minimizing the following squared error
to the target color value ¢,

A, B) = argmin 3 uy[| A% + B = c[. (4)

Here, the weights w{b are calculated as w{b = SoftMax(—||#] fkg |2/T). These set
(2

of weights signify how much each target intensity affects the affine transformation

learned for each bin centroid. The objective (4) corresponds to a linear least

squares problem, which can efficiently be solved in closed form as detailed in the
Appendix (Sec. A).

3.4 Learning the Camera ISP

The RAW-sRGB pairs taken from two different devices are misaligned. The
reasons are the different fields of view for both the cameras, parallax, and small
motion of objects in the scene. Misalignment in the RAW-sRGB pair makes
training the ISP pipeline difficult. Trying to learn in such a setting produces
blurry results and significant color shift (Fig. 4). Hence, a robust loss applicable
to the weakly paired setting is pivotal. In this section, we introduce an aligned
masked loss for robust learning in a weakly paired setting. We then introduce
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the objectives for our main ISP network, pre-processing network, and the color
prediction network. Lastly, we provide training strategies and details.
Alignment: We calculate aligned losses for learning our color conditional RAW-
to-sRGB network in the wild. For alignment, we use the PWC-net [19] for com-
puting optical flow. We denote by ¢,, = W(c, f(c,z")) the color image ¢ aligned
with respect to the processed RAW 2z’ (Sec. 3.3). Here, f(c,2’) is the optical
flow from the color image ¢ to the processed RAW /. While we found PWC-Net
to be robust to substantial color transformations between the input images, we
use the processed RAW 2z’ as input as it has a much smaller difference in color
and intensity to the reference color image c. Further, the loss masking discussed
next aids in a more robust loss calculation for inaccurately aligned regions.
Loss masking: Although, employing an aligned L;-loss partially handles the
misalignment problem for ISP learning in the wild, the flow estimation itself can
introduce errors. In particular, optical flow is often inaccurate in the presence
of repeating patterns, occlusions, and homogeneous regions. This leads to an
incorrect training signal which degrades the quality of the ISP network. We
therefore propose a mask for our loss by identifying regions where the optical
flow is inaccurate. Inspired by [16], we use the forward-backward consistency
constraint to filter out regions with inaccurate flow. The optical-flow consistency
mask m is set to 1 where the following condition holds true, and otherwise to 0:

£ 1) + Fh @) < an ([£@ M)+ [F@ha)[P) +as (5)

Here, 2’ is the processed RAW sensor data (Sec. 3.3). And, y* is the target sSRGB
image bilinearly downsampled by a factor of 2. And, :v; . is 2’ aligned with y*.
Thus, the mask m aids in masking out inaccurately aligned regions.

ISP Network Loss: The masked target sSRGB prediction loss is given by:

9§ = F(x,¢), where ¢ = C(Z, cz)
Lyrea(9:y) = [m" © (y5 — 9) 1. (6)

Here, y; is the target DSLR sRGB aligned w.r.t. the final predicted sRGB 7. We
did not see a significant difference in performance when we align the predicted
sRGB ¢ w.r.t. the target DSLR sRGB for our loss calculation (Sec. C of the
Appendix). Our choice of alignment direction circumvents the need of differenti-
ating through the warping process. During training, the color image ¢ = y* is the
2x downsampled ground truth sRGB. Further, ¢z is the color image ¢ aligned
with & (Eq. 2). Lastly, m is the 2x upsampled mask m via nearest neighbour
interpolation.

Pre-processing Network Loss: The pre-processing net (Sec. 3.3) aims at
providing a source image that aids our learned parametric color mapping scheme
(Sec. 3.3) and denoising the processed RAW z’ (Sec. 3.3). Motivated by this, we
design loss for our pre-processing net P as,

Lmap(c(fvcx’)acx’) = |lm © (C(%, cer) — car)|l1, and

Lconstraint(x/ai) = ||b*$/ _b*iaHl (7)
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Here, & is the output of our Pre-processing Net (Eq. 2) and b is a predefined
blurring kernel. The 1oss Lconstraint constrains P to keep the color of z’. The
color image ¢ = y* is the 2x downsampled ground truth sRGB. And, ¢, is the
color image c aligned with z’. These set of losses aid the pre-processing network
in not only denoising the RAW sensor data but also allows for the network to
be flexible enough to learn a color space where the color mapping (Sec. 3.3) is
optimal.

Color Prediction Network Loss: To train our target color prediction network
(Sec. 3.2), we employ a color prediction loss on the predicted low resolution
target color image §°" = G(z) and a reconstruction loss on the reconstructed
RAW sensor data Z,

;

Lyeconstruct (i‘, 1‘) = Hl‘ - ':EHl (8)

Ling(§% ) = [m o (5% — c)

Here, ¢,y = yi, is the 2x downsampled ground truth sRGB aligned with z’.
Hence, ¢, serves as the target color image for training our color prediction
network in the loss L;lrred. The reconstruction 1oss Lyeconstruct further encourages
the encoder Epnone() to preserve important image details.

Training: Thanks to the independent objectives, we can train our color condi-
tional ISP network F and the color prediction network G separately. This allows
use of larger batch sizes and reduced training times significantly. A comparative
study with the joint fine-tuning of both the networks is provided in Sec. C of
the Appendix. The final training loss for F is given by (6) and (7). The loss for
the color prediction net G is given by (8). Each batch for training both, F and
G comprises 16 pairs of randomly sampled RAW phone images 2 € R**80x80
and DSLR sRGB images y € R3*160x160_ Dyring training, we augment the data
by applying random flips and 90 deg rotations. To increase the robustness of
our color conditional ISP network F, we employ color augmentations on the
ground truth DSLR sRGB during training. Specifically, we randomly jitter the
hue, saturation, brightness and contrast in a range [—0.2,0.2].

The blurring kernel b in (7) is a 9 x 9 Gaussian with the standard deviation in
each of the dimension set to 2. The constants a; and s for computing m are set
to 0.01 and 0.5, respectively. The number of bins B in our color mapping 3.3 is set
to 15 and the temperature parameter T = (1/B)2. Finally, to handle vignetting
(dark corners) that occurs in RAW sensor data, we append the RAW data with a
pixel-wise function of 2D coordinate map for the inputs to our pre-processing net
P and the color prediction net G. We use the ADAM algorithm [13] as optimizer
with 81 = 0.9 and B2 = 0.99. The initial learning rate for training both our
networks is set to 2e — 4 which is halved at 50%, 75%, 90% and 95% of the
total number of epochs respectively. The networks are trained separately for 100
epochs on a Nvidia V100 GPU. The training time for our F and G nets was 27
hours and 22 hours, respectively. Other implementation and architecture details
are provided in the Appendix. The code would be released upon publication.
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4 Dataset

We propose the ISP in the Wild (ISPW) dataset for learning the camera ISP
in the wild. The ISPW dataset consists of a set of 200 high-resolution captures
from a Canon 5D Mark IV DSLR camera (with a lens of focal length 24mm)
and a Huawei Mate 30 Pro mobile phone. Each capture comprises of the RAW
sensor data from the mobile phone (4x1368x1824) and 3 sSRGB DSLR images
(3x4480x6720) of the same scene taken at different exposure settings (EV val-
ues: -1, 0 and 1). All DSLR images were captured with an ISO of 100 for more
detail and less noise. Further a small aperture of F18 was used for a large depth
of field. The dataset was collected over several weeks in a variety of places and
in various illumination and weather conditions to ensure diversity of samples.
During the capture, both the devices were mounted on a tripod using a cus-
tom made rig to ensure no blur due to camera motion. Collection was focused
on predominately static scenes in order to ease the alignment between the two
cameras. However, small motion is inevitable in most settings, and thus need to
be handled by our data processing and robust learning objectives. We split the
ISPW dataset into 160, 20, and 20 high-resolution captures for training, valida-
tion, and test, respectively. Our ISPW dataset will be released upon publication.
We believe that it can serve as an important benchmarking and training set for
RAW-to-sRGB mapping in the wild.

Data processing:: We describe the pre-processing pipeline for our ISPW data
here. We consider the DSLR image taken at EV value 0 as the target DSLR
sRGB in this work. We first crop out the matching field of view from the phone
and the DSLR high-resolution captures using SIFT [15] and RANSAC [6]. Crops
of size 320320 are then extracted in a sliding manner (stride of 160) from both,
the DSLR sRGB and the phone sRGB (obtained using the phone ISP). Local
alignment is performed by estimating the homography between two crops. The
corresponding 4-channel RAW crop from the phone of size 160 x 160 is extracted
using the coordinates of the 320 x 320 phone sRGB crop and paired with the
DSLR sRGB crop. In order to filter out crops with extreme scene mismatch, we
discard the RAW-sRGB pairs which have a normalized cross correlation of less
than 0.5 between them.

5 Experiments

Here, we perform extensive experiments to validate our approach for RAW-to-
sRGB mapping in the wild. We evaluate our approach on the test sets of the
ZRR dataset [9] and our ISPW dataset (Sec. 4). The methods are compared in
terms of the widely used PSNR and SSIM [22]| metrics. For a fair comparison, we
align the ground truth DSLR sRGB with the phone RAW for the computation
of PSNR and SSIM metrics. For additional qualitative results and analysis, refer
to the Appendix (Sec. C).
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5.1 Ablative Analysis of the Color Mapping

In this section, we study the effectiveness of our color mapping scheme (Sec. 3.3)
compared to other alternatives. The results on the ZRR dataset are reported in
Tab. 1.

NoColorPred: As a baseline for evaluating our color mapping scheme, we
train F(x,¢) with the color information ¢ set to 0. This implies a simple feed-
forward network setting. We do not include the color mapping module C in this
version. NoColorPred achieves a PSNR of 21.27 dB and a SSIM of 0.844. This
variation learns average average and dull colors and is not able to account for
various factors on which the color in an image depends. ColorBlur: Next, as
in CycleISP [24], we train F(xz,¢) where the target color é = z % yi, is achieved
by blurring the 2x downsampled target DSLR sRGB (aligned with z’) with a
Gaussian kernel z during training. At inference, we apply the same blurring to
our predicted target color ¢ = zxG(x). As in NoColorPred, we do not include the
color mapping module C in this version. ColorBlur achieves a gain of 2.16 dB in
PSNR over NoColorPred. Although being better than NoColorPred, ColorBlur
fails to capture the sudden changes of color in the image contour.

We further evaluate different versions of the color mapping scheme C. Lin-
earMap: First, we consider learning a 3 x 3 global color correction matrix be-
tween the processed RAW 2/ and the color ¢ for each training pair, as in [3]. Lin-
earMap produces inaccurately colored images specially in terms of the contrast,
since it cannot represent more complex color transformations and tone curves.
ConstValMap: Here, we use a simplified version of our approach (Sec. 3.3)
as C by using fixed values for each bin instead of the affine mapping learned
in Sec. 3.3. Channel dependence is not exploited in this version for calculating
the values. This achieves a substantial improvement of 0.76 dB in PSNR over
LinearMap. Thus, proving the utility of using a more flexible color mapping for-
mulation. AffineMapIndep: Setting C to our color mapping scheme (Sec. 3.3)
but without any channel dependence boosts the PSNR by a further 1.13 dB over
ConstValMap. Increasing the expressive power of each bin by predicting an affine
transform instead of a constant is thus pivotal for better performance of our color
conditional RAW-to-sRGB mapping. AffineMapDep: Here, C is set to our full
formulation discussed in Sec. 3.3. Thus, exploiting channel dependence in C is
beneficial as quantified by the PSNR, increase of 0.63 dB w.r.t. AffineMapIndep.
+Preprocess: Finally, we add our pre-processing network P (Sec. 3.3) to the
AffineMapDep version. This gives an impressive boost of 0.83 dB in PSNR over
AffineMapDep hence, validating the need to remove noise and pre-process the
phone RAW before color mapping.

5.2 Ablative Study of the Training Loss

Here, we study the effect of our masked aligned loss (Sec. 3.4). The results on
the ZRR dataset are reported in Tab. 2. See Appendix for a visual comparison.

NoAlign: As a baseline for ablating our loss, we employ an unaligned L-loss
for all our objectives (Eq. (6), (7) and (8)). The mask m is set to 1 at all locations.



Learning the ISP in the Wild 13

Table 1: Ablative study of our color mapping scheme (Sec. 3.3) on the ZRR
dataset.
NoColorPred ColorBlur LinearMap ConstValMap AffineMapIndep AffineMapDep +Preprocess

PSNR?T 21.27 23.43 21.89 22.65 23.78 24.41 25.24
SSIMT 0.844 0.857 0.832 0.859 0.861 0.873 0.879

Table 2: Ablative study of our Table 3: Ablative study of our color prediction
loss (Sec. 3.4) on the ZRR network (Sec. 3.2) on the ZRR dataset

dataset. NoColorPred +U-Net +Reconstruct +GlobalContext
NoAlign +AlignedLoss +Mask  PSNR?T 21.27 24.09 24.43 25.24
SSIMT 0.844 0.865 0.871 0.879
PSNR?T 20.56 24.62 25.24
SSIM?T  0.785 0.867 0.879

+AlignedLoss Further, employing alignment before the loss calculation leads
to more crisp predictions, giving a large improvement of 4.06 dB in PSNR and a
relative gain of 10.4% in SSIM. Although improving the results, the prediction
lacks detail and is characterized by a noticeable color shift. This is due to the
inaccuracies in optical flow computations that may occur due to occlusions and
homogenous regions. +Mask Finally, our masking strategy using Eq. (5) leads
to a significant gain of 0.62 dB in PSNR. (+Mask) produces a more detailed
output with colors consistent with the target DSLR sRGB. This shows that
accurate supervision using our masked loss during training is beneficial to our
DSLR sRGB restoration network.

5.3 Ablative Study of the Color Prediction Network

Next, we study the effect of our color prediction module (Sec. 3.2). The results
on the ZRR dataset are reported in Tab. 3.

NoColorPred: This is the same baseline as in Sec. 5.1, which employs no
explicit color prediction or conditioning. U-Net: Integrating a low resolution
U-Net based color predictor without the reconstruction branch or global con-
text transformer leads to an impressive gain of 2.82 dB over NoColorPred. This
demonstrates the effectiveness of conditioning F on the color image for robust
ISP learning and prediction. +Reconstruct: Further, integrating a reconstruc-
tion branch in our color predictor helps G(z) in learning a more informative
encoding Ephone(), leading to a 0.34 dB increase in PSNR. Thus, +Recon-
struct facilitates our encoder in the color predictor module to encapsulate all
the information into the encoding that is necessary for accurate color prediction.
+GlobalContext: Finally, integrating the global context transformer (Sec. 3.2)
in our U-Net color predictor G(x) provides our color conditional ISP net F(z, ¢)
with a substantial gain of 0.81 dB. This clearly demonstrates the importance of
exploiting global information in predicting coherent colors.
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(a) MWISPNet (b) AWNet (c) LiteISPNet  (d) Ours (e) GT

Fig.4: Visual results for state-of-the-art comparison on our ISPW dataset (first
row) and the ZRR dataset (second row). Best viewed with zoom.

Table 4: State-of-the-Art comparison on the ZRR [9] and our ISPW datasets.

ZRR Dataset ISPW Dataset
PSNRf SSIM7 Time(ms) PSNRf SSIM7 Time(ms)
PyNet [7] 22.73  0.845 62.7 - - -
MW-ISPNet [9] 23.13  0.849 111.3 22.43  0.746 99.4
AWNet [5] 23.52  0.855 63.4 23.10  0.787 50.8
LiteISPNet [26] 23.81 0.873 23.3 23.51  0.809 17.2
Ours 25.24 0.879 67.6 25.05 0.821 55.7

5.4 State-of-the-Art Comparison

In this section, we compare our color conditional ISP network with state-of-the-
art methods for RAW-to-sRGB mapping, namely PyNet [7], MW-ISPNet [9],
AWNet [5] and LiteISPNet [26]. We evaluate on the test splits of the ZRR
dataset [9] and our ISPW dataset (Sec. 4). Among these methods, MW-ISPNet,
AWNet and LiteISPNet employ discrete wavelet transforms for incorporating
global context. To deal with misalignments, MW-ISPNet, AWNet and PyNet
incorporate the VGG perceptual loss [12], while LiteISPNet employs an aligned
loss using optical flow computation [19].

Table 4 lists the quantitative results on the test split of the ZRR dataset that
contains 1203 RAW-sRGB crop pairs of size 448 x448. Our method outperforms
all previous approaches by a significant margin, achieving a gain of 1.43 dB
PSNR compared to the second best method: the very recent Lite[SPNet. We
then run the best performing methods on the test split of our ISPW dataset,
that contains 3023 RAW-sRGB crop pairs of size 320x320. For a fair comparison,
all the methods were retrained on our dataset using apt train settings. The
performance gap between our color conditional ISP network and other methods
is more stark for the ISPW dataset, with our approach achieving a PSNR 1.54
dB higher than the second best LiteISPNet.
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Figure 4 shows the visual results for our color conditional ISP compared to
the top three performing methods. Compared to our approach, all the other three
methods fail to capture the accurate color of the target DSLR sRGB. Moreover,
the results for MW-ISPNet and AWNet are blurry due to their inability to
handle misalignment well. On the other hand, although Lite[SPNet employs an
aligned loss, it fails to account for inconsistent flow computations hence leading
to significant color shift and loss of detail. Conversely, our approach produces
crisp DSLR-like sSRGB predictions with accurate colors, thus proving the utility
of our global attention based color predictor paired with our masked aligned loss.
The blur and color shift effect is more intense for all other methods on our dataset
that contains misaligned RAW-sRGB pairs. Finally, we calculate the average
inference time per image for our method on both the datasets. We achieve an
average per image inference times of 67.6 ms and 55.7 ms, respectively on the
sRGB images of sizes 448x448 (ZRR dataset) and 320x320 (ISPW dataset).

6 Conclusion

We address the problem of mapping RAW sensor data from a phone to a high
quality DSLR image by modelling it as a conditional ISP framework on the
target color. To aid our color conditional ISP net during inference, we propose a
novel encoder-decoder based color predictor that encapsulates an efficient global
attention module. A flexible parametric color mapping scheme from RAW to the
target color is integrated for a robust training and inference. Finally, we propose a
masked aligned loss for filtering out regions with inconsistent optical flow during
aligned loss calculations. We perform experiments on the ZRR dataset and our
ISPW dataset, setting a new state-of-the-art on both the datasets.

Acknowledgements

This work was supported by the ETH Ziirich Fund (OK), a Huawei Technologies
Oy (Finland) project and the Alexander von Humboldt Foundation.



16 Tripathi et al.

Appendix

In the appendix, we present details such as the network architecture for each of
the components in our architecture. We also provide additional full-resolution
results for our approach. Further, we provide additional ablations and some more
qualitative results. Concretely:

— We provide the closed-form solution for the minimization problem stated for
our color mapping (Sec. 3.3) (Sec. A).

— We provide details about the network architecture and some other important
details for all the components in our framework (Sec. B).

— We provide some additional ablations and qualitative results for the ablations
stated in the manuscript (Sec. C).

— We provide some additional full resolution results for our approach (Sec. D).

— We provide some more qualitative results for state-of-the-art comparisons of
our method with other approaches (Sec. E).

— We provide some example captures from our ISPW dataset (Sec. F).

— We visualize the intermediate results for our ISP in the wild pipeline (Sec. G).

— We provide some additional experiments for our approach (Sec. H).

A Color Mapping

Here, we present the closed form solution to the minimization problem for learn-
ing the affine transformation for each bin centroid in our color mapping scheme
(Sec. 3.3) stated in equation 4. We define V;/ € R**! as the affine transform
calculated for bin centroid b and channel j. Vbj is a column vector of length 4
that contains A] € R3*! as the first 3 elements and B} € R as the last element.
Using pseudo-inverses:

Vi = (XTX) KT (9)

Here, X € RV*4 where N is the total number of pixels in which is the
output of our pre-processing network P (Sec. 3.3). The i** row of X, X; =

J

wy, [& i

} 22 73 1]. And ¢/ € RV*! are the intensity values of the j/* channel in
the target color image c. Note that the color image c is given by the downsampled
target DSLR sRGB during training and during inference, ¢ = G(z) is given by
our color prediction network (Sec. 3.2). Further, #}, 77 and #? are the intensity
values of the red, green and blue channels, respectively at the it" location in the
pre-processed source image Z (Sec. 3.3) . The weights w], are calculated as in
Sec. 3.3.

B Network Architecture and Other Details

In this section, we provide the network architectures for each of the components
proposed in our ISP Net.
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B.1 The Color Conditional ISP Network

Here, we discuss the architecture for our color conditional RAW-to-sRGB net-
work. Our DSLR sRGB network F(z,¢) is conditioned on the color ¢. Hence,
it takes a 7-channel input which we get by concatenating the 4-channel phone
RAW z and the 3-channel color ¢ in the channel dimension. Our restoration net
F comprises of a convolutional layer followed by 8 Residual-in-Residual Dense
Blocks (RRDB) [21]. The resulting feature map is 2x up-scaled using an upconv
layer. Our upconv layer applies a convolution followed by a leakyReLu to the 2x
up-scaled feature map from the RRDB layer via nearest-neighbour interpolation.

y

T—
N i Conv —| #»| RRDB block » —» UpConv [—»
C—
x8
H W __ H W H W H x W x 3
2r2x1 2x2xlnl 2X2/[l|

Fig. 5: Our color conditional DSLR sRGB restoration network F.

B.2 The Pre-processing Network

Here, we state the architecture for our pre-processing net P. The pre-processing
net P comprises of a noise estimation module 7. The architecture for our pre-
processing network P is shown in Fig. 6. It is important to note that 2-channel
2D positional coordinates are concatenated in the channel dimension to the 3-
channel processed RAW z’ to mitigate the effects of vignetting that is a common
phenomenon in RAW data.

The processed phone RAW 2/ = I'(z) is a rough visualization of the RAW
data x. We define the operation I'(x), henceforth. To get a’, we first neglect
one of the green channels in z and then normalize the resulting 3-channel image
between [0, 1]. Further, we apply a constant approximate gamma correction to
the final processed image z’. The scaling and gamma correction operations can
be listed as:
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Fig. 6: Our RAW pre-processing network P.

a = (acl/rnax(yc;m,1/2.5))ﬁ (10)
x'? = (:1c‘n’/rnax(gciww1))ﬁ (11)
2 = (2" /max ()4, 1/1.4))ﬁ. (12)
The above operations encompass the functional I'(z). Here, 2'!, 2’2 and 2’3
are the red, green and blue channels, respectively of 2. And, z. .., 23 . and

xd  are the max values in the red, green (one of the green) and blue channels,
respectively of the RAW z. The specific scaling factors in the above mentioned
power law were arrived by quantitative evaluation of the data. Further, the
gamma correction factor of 1/2.2 is a commonly used value in imaging systems.

B.3 The Color Prediction Network

Encoder block: Figure 7 shows the architecture at each of the levels in the con-
tracting path of our U-Net. Each of these modules comprises of 2 convolutional
layers comprising of successive convolution and leakyReLu activations. The con-
volutional layer is followed by an efficient Global . A skip connection between the
input and output of the Global Context Transformer makes the learning more
stable and efficient. The resulting feature map is then average pooled and passed
on to the next contracting level. The number of input channels at level [ is given
by I; = 64 x 2! where [ € {1,2,3}. For level | = 0, D; = 6 i.e. the phone RAW
data is concatenated with the 2D positional coordinates to mitigate vignetting

that is a common in RAW sensor data. For the Global Context Transformer, the
1024 +7
learned latent vector Z; € R 2 **  at level [ of the contracting path. Fixing

the size of the latent vectors limits the computational complexity for attention
to linear in the input instead of quadratic. The number of levels in both, the
contracting and expanding path’s is set to 4.

Decoder block: Figure 8 shows the architecture at each of the levels in the
expanding paths (both our decoders). Each of these modules comprises of a
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Fig.7: The encoder blocks in the contracting path of our DSLR color predictor
Gg.

transposed2D convolution with kernel size=2 and the stride=2. This is followed
by concatenating the features from the corresponding level in the contracting
path. The resulting feature map is finally passed through a couple of convolu-
tional layers comprising of successive convolutions and leakyReLu activations.

Transpose : Conv+Leaky
Conv — Concat Skip ReLu
x2
H W _
— X X 1y
2 2 L] L
]H],l X Vv’; x 3‘; H[ X W; X QD] H,‘ X ‘W, X 3,

Fig.8: The decoder blocks in the expanding path of our color predictor G.

As a final layer, our RAW reconstruction decoder applies an extra 3 x 3 con-
volution to the output of the respective U-Net decoder branch. And, the DSLR
color predictor branch employs a RRDB block to the output of the respective
decoding branch.

C Detailed Ablative Experiments

In this section, we provide additional ablations for our approach and provide
qualitative results for the ablations discussed in the manuscript (Sec. ?7).
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C.1 Additional Ablations

In addition to the ablations provided in the manuscript, here we provide some
more ablations on the test set of the ZRR dataset. The evaluation criteria re-
mains the same as in the manuscript.

Table 5: Impact of joint fine-tuning of our model components F and G, starting
from the independent training used in the paper. Results listed on the ZRR
dataset.

Independent Train  Joint Fine-tuning

PSNR? 25.24 25.27
SSIM?T 0.879 0.883

Impact of joint fine-tuning of our model components F and G, starting
from the independent training: Here, we do a comparative study of the
independent training of our ISP network F and Color Prediction G versus the
joint fine-tuning of F and G. Training F and G independently allows us to use
larger batch sizes, hence faster convergence of the training. We investigate joint
fine-tuning of both, our ISP net F and the Color Prediction net G by starting
from the independently pretrained F and G models. The batch size is reduced to
8 (versus 16 when we train F and G independently). Table 5 shows the effect of
this joint fine-tuning compared to independent training of our F and G on the
ZRR dataset. It is evident from Tab.5 that the improvement is negligible when
we jointly fine-tune our ISP net F and our color predictor G. Thus, justifying
our choice of independently training F and G.
Impact of different alignment strategies for ISP Network loss compu-
tation: Next, we analyze the different alignment strategies in our ISP Network
Loss (Eq. 6 of the manuscript). First, we report results for align the DSLR
sRGB with the phone RAW (Align GT with RAW) for ISP Network Loss cal-
culation. We observe a drop in performance compared to the case where we
align the DSLR sRGB with the ISP Net prediction (Align GT with Prediction).
This drop can be explained by the fact that aligning the DSLR sRGB with the
RAW involves estimation of the optical flow in a low resolution (downsampled
DSLR sRGB aligned with 2’) and then upscaled (via bilinear interpolation) by
a factor of 2. This introduces some warping inaccuracies and hence, the drop
in performance. On the other hand, aligning the ISP Net prediction with the
DSLR sRGB (Align Prediction with GT) gives a very slight improvement in
terms of the PSNR while increasing the training time of the ISP Net F by al-
most 10% because this alignment strategy involves differentiating through the
warping process. Hence, we align the DSLR sRGB with the ISP Net prediction
for the ISP Network Loss calculation.

We also time each of our training iterations (with a batch size of 16). Compu-
tation of the optical flow and warping in each training step is not the bottleneck:
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Table 6: Impact of different alignment strategies for ISP Network Loss compu-
tation (Eq. 6 of the manuscript). Results listed on the ZRR dataset.

Align GT Align GT Align Prediction

with RAW  with Prediction with GT
PSNR? 25.09 25.24 25.26
SSIM?T 0.874 0.879 0.881
Training time (hrs)| 26.0 26.8 29.2

only 11% of the time in a training iteration (2.6s). The forward time was found
to be 1.1s, while the backward time was 0.9s. The total loss calculation takes
0.6s (this also encompasses the optical flow). It is important to note that the
timings are a bit inflated because of the time() function usage in python.

Table 7: Additional ablative study for our color mapping scheme - unlike the
ablation provided in the manuscript (Tab. ?7? of the manuscript), we feed in
directly the color ¢ = G(z) into F without the color mapping C during inference.
Results listed on the ZRR dataset.

PSNR# SSIM?t

NoColorPred 21.27  0.844
ColorBlur 23.43  0.857
LinearMap 22.16  0.839
ConstValMap 22.96  0.860
AffineMapIndep 23.90 0.863
AffineMapDep 24.46  0.873
+Preprocess 25.19 0.878

Effect of color mapping during inference: We additionally ablate the use
of our color mapping scheme C at inference for our approach. In table 77 of the
manuscript, we provided the ablation for various color mapping schemes. Here,
we provide an additional ablation (Tab. 7) where unlike in the manuscript, we
feed in directly the color ¢ = G(x) into F without the color mapping C during
inference. For each of the ablations the corresponding network is still trained
with the respective color mapping scheme. From Tab. 7, it is evident that for
the less powerful color mapping schemes, it is better to directly feed in the the
color image ¢ = G(x) into our color conditional restoration network F. On the
other hand, we observe that using a powerful and a more flexible color mapping
scheme like ours is beneficial during inference giving a boost of 0.05 in PSNR
over the case where we do not employ the color mapping at inference (Tab. 7).
Hence, in our final architecture we apply our color mapping from Pre-processed
RAW 2 to the predicted color ¢ by our color prediction net G during inference.
This provides an additional regularization for spurious local colors that may
occur in c.
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Table 8: Influence of using a processed RAW z’ in place of a 3-channel version
of z (by neglecting one of the green channels) for our color mapping and pre-
processing network. Results listed on the ZRR dataset.

PSNR?T SSIM?T

Ours-RAW  24.97 0.875
Ours 25.24  0.879

Effect of using 2’ instead of a 3-channel version (by neglecting one of
the green channels) of the RAW z in our framework: Here, we provide
an ablation for the utility of using the processed RAW 2’ (Eq. (10)) instead of
a 3-channel version of = (by neglecting a green channel) in our color mapping C
and our pre-processing network P. Table 8 shows that using a processed RAW
a2’ (Ours) aids both, our color mapping C and our pre-processing net P. Hence,
achieving an improvement in PSNR by 0.27 dB in comparison to the version
where we use the RAW z (Ours-RAW).

Table 9: Ablative study for exploiting the 2D positional coordinates of the RAW
to counter vignetting. Results listed on the ZRR dataset.
PSNR{ SSIM{

Ours-No2DCoords 25.07 0.877
Ours 25.24  0.879

Effect of concatenating the 2D positional coordinates to the input
RAW for our pre-processing network and the color predictor: Table 9
shows that using the 2D positional coordinates in our pre-processing network
and the color predictor provides us an improvement of 0.17 dB in PSNR over
Ours-No2DCoords where we do not concatenate the 2D positional information
to the raw input in the pre-processing network P and our color predictor G. It is
important to note that we found concatenating the positional information only
in P and G to be beneficial. We believe that this is due to the fact that our color
conditional restoration net F is very efficient in exploiting the color information
¢ provided by the color predictor G.

C.2 Color Mapping

Figure 9 shows the qualitative results for our ablative study for our proposed
flexible soft attention based color mapping scheme (Sec. 3.3 of the manuscript).
The qualitative results clearly demonstrate that having a more expressive and
flexible color mapping scheme like ours is pivotal in capturing accurate colors
of the target DSLR. The qualitative results reiterate the trends noticed in the
quantitative results presented in the manuscript. A simple feed forward network
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without a color prediction network (NoColorPred) produces less accurate colors
since it does not inherently capture many other factors like camera parame-
ters and external environmental conditions that effect the color in an image.
Incorporating a color prediction network in our DSLR sRGB restoration net-
work provides us with a boost as seen in Fig. 9. Among the various alternatives
that were tried, the CycleISP [24] inspired ColorBlur version fails to capture
the sudden changes of color in the image contour and produces blurry results.
On the other hand LinearMap computes a global color correction matrix which
produces inaccurately colored images specially in terms of contrast due to its
non-local addressing of the problem by LinearMap.

Among the flexible parametric color mapping based versions of our color-
mapping scheme C (Sec. 3.3 of the manuscript), the ConstValMap version that
learns a fixed numeric value for each bin centroid is not powerful enough in
terms of expressivity and having just 15 bins does not suffice for a reasonable
performance. The accuracy in colors predicted by AffineDepMap in comparison
to AffineIndepMap clearly demonstrates the the utility of exploiting the depen-
dence between the color channels in an image for our color-mapping. Further,
pre-processing the RAW (as discussed in Sec. 3.3 of the manuscript) aids our
color mapping immensely by getting rid of the noise that is detrimental for color
mapping. As seen in the results, our Color conditional RAW-to-sRGB pipeline
aided by our color prediction module G achieves almost identical colors to the
target DSLR sRGB

C.3 Loss

Here, we show qualitatively the effectiveness of using a masked aligned loss for
learning accurate RAW-to-sRGB mapping in the wild. Figure 10 shows the vi-
sual results for the ablation study of our robust masked aligned loss (refer to
Sec. 5.1.2 of the manuscript). The qualitative results show that computing a non-
aligned loss (NoAlign) produces a blurry result due to the misalignment between
the phone RAW and the corresponding DSLR sRGB during training. Further,
aligning the RAW-sRGB pairs (+AlignedLoss) during training by explicit opti-
cal flow computations [19] improves the results but, the output during inference
still remains blurry and is characterized by a noticeable color shift. This is due to
the fact that we do not account for the inaccuracies in optical flow computations
that may occur due to many reasons such as occlusions and inaccurate flows
in homogeneous regions or regions with repeating patterns. To mitigate these
inaccuracies in the optical flow computation, employing a forward-backward op-
tical flow consistency mask (Sec. 3.4 of the manuscript) to our aligned loss
(+Mask) produces a more detailed output with colors consistent with the target
DSLR sRGB. This shows that accurate supervision using our masked loss during
training provides immense gains to our DSLR sRGB restoration network.
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C.4 Color Prediction

In this section, we provide the the qualitative results for our color prediction
network G. Figure 11 shows the qualitative results for the ablative study on our
color prediction network. From Fig. 11, it becomes evident that conditioning
RAW-to-sRGB pipeline on the color information (+U-Net) is pivotal for RAW-
to-sRGB mapping in the wild. Introducing a reconstruction loss (+Reconstruct)
on the reconstructed phone RAW, further improves the visual quality. Specifi-
cally, we notice that +Reconstruct accurately determines the lighting conditions
(and other parameters on which the color in an image depends) at the time of
capture. Thus, pointing to the utility of the reconstruction branch that helps our
encoder in the color predictor module to encapsulate all the information into the
encoding that is necessary for accurate color prediction. Finally, integrating our
Global Context Block (+GlobalContext) outputs more coherent and consistent
colors with the target DSLR sRGB. For the first example in Fig. 11, exploiting
global cues helps our ISP Net to predict a sSRGB image more consistent (see top
right corner of the image) with the DSLR sRGB. And, in the second example
the Global-Context transformer aids in predicting accurate colors for the green
leaves in the image. Our final version produces colors almost identical to that of
the target DSLR sRGB.

D Results on Full Resolution Images

In this section, we present full resolution results for our approach. Fig. 12 shows
the full resolution (2736x3648) predictions of our approach on the ISPW dataset.
Our approach produces accurate globally coherent colors w.r.t. the DSLR sRGB.
On the other hand, LiteISPNet [26] produces dull inaccurate colors. Thus, un-
derlining the utility of leveraging global context by our color prediction network.
Importantly, our efficient fixed size latent-array based global attention aids in
applying our models on large images since the computational complexity of our
Global Context Transformer layer scales linearly with the image size. Addition-
ally, LiteISPNet results in loss of detail compared to the DSLR quality sRGB
images produced by our approach. This shows the effectiveness of employing a
masked aligned loss during training.

E State-of-the-Art Results

In this section, we exhibit our results qualitatively in comparison to other existing
methods on the test sets of ZRR dataset [9] and our ISPW dataset. Figures
13 and 14 show the state-of-the-art comparison of our approach with other
existing approaches on the ZRR and the ISPW datasets, respectively. The visual
results clearly show the supremacy of our method in comparison to previous
methods. In particular MW-ISPNet [9] and AWNet [5] produce blurry results
hence demonstrating their ineffectiveness in handling misalignment between the
phone RAW and the DSLR sRGB pairs during training. The effect is more
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adverse in case of the ISPW dataset where the degree of the aforementioned
pairwise misalignment is worse as compared to the ZRR dataset. Further, the
LiteISPNet [26] uses an aligned loss for learning a mapping between the phone
RAW and the DSLR sRGB. Though, this reduces the blur (does not completely
get rid of it) in the results as in previously mentioned methods, it lacks detail
and suffers a significant color shift. Our approach on the other hand leapfrogs
LiteISPNet significantly by providing very crisp results capturing rich details
and accurate colors. This is clearly evident from our visual results. Further, in
Fig. 14 we also show the results from the phone ISP. We notice that in many
cases our results are richer in detail as compared to the target DSLR sRGB and
the resulting sSRGB from the phone ISP. This underlines the effectiveness of our
approach for RAW-to-sRGB mapping in the wild.

F ISP in the Wild (ISPW) dataset

Here, we demonstrate a few example images captured in our ISP in the Wild
(ISPW) dataset. Fig. 15 demonstrates that our ISPW dataset is captured in
varying lighting and weather conditions. Thus making ISPW a very challenging
dataset for training and benchmarking ISP pipelines in the wild.

Further, we provide a few example crops from our ISPW dataset after data
processing (Sec. 4 of the manuscript). We capture the DSLR sRGB at 3 different
exposures for the same phone RAW (Fig. 16). We consider the DSLR sRGB
captured with an EV setting 0 as the target for our RAW-to-sRGB mapping in
the wild. Apart from providing various additional metadata that can further aid
RAW-to-sRGB mapping in the wild research, we also provide the DSLR sRGB
at 2 additional exposure settings which can be further used by the community
for research directions such as automatic exposure correction [2] and various
other avenues.

G Visual results for various components in our ISP
pipeline

In this section, we show the visual results for different components in our RAW-
to-sRGB mapping in the wild pipeline. Figure 17 shows the intermediate results
for our ISP Network. We show that 2’ = I'(x) (Eq. 10) provides our pipeline
with a rough visualization for the phone RAW z. This processed RAW z’ aids
in creating a mask for regions where alignment is difficult leading to a more
accurate training supervision. We also see that, our Global-Context transformer
based color predictor predicts a color image ¢ = G(x) that is consistent with the
colors in the target DSLR sRGB y. Our flexible parametric color mapping scheme
is powerful enough to color-map the pre-processed RAW Z to the predicted color
image ¢ = G(x) very accurately with just 15 bins. Finally, our RAW-to-sRGB
restoration network predicts the DSLR quality sSRGB image y = F(z, ¢).
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H Additional Experiments

Feature maps from our Color-Prediction Net: Figure 18 shows the feature
maps from different encoder decoder levels in our U-Net color predictor network
G. The network captures detailed image information at different levels.
Cross-dataset experiment: Next, to check how our models perform on datasets
they are not trained on. We do inference on the ISPW dataset using the model
trained on the ZRR dataset and vice versa. Figures 19 and 20 show the visual
results on example crops from both the datasets. It is evident from the qualita-
tive results that our framework is able to produce feasable DSLR quality sRGB’s
even when it is run on a dataset it is not trained on.
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1b) ColorBlur

y

AffineMapDep
g

2a) NoColorPred 2b) ColorBlur 2c) LinearMap 2d) ConstValMap

2e) AffineMapIndep 2f) AffineMapDep  2g) +Preprocess 2h) DSLR sRGB

Fig.9: Qualitative results for the ablation of our color mapping (Sec. 3.3 of
the manuscript). These results demonstrate qualitatively our ablation study in
section 5.1 of the manuscript. The crops are taken from the ZRR dataset. Best
viewed with zoom.
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NoAhgn +AhgnedLoss ) +Mask ) DSLR sRGB

Fig. 10: Qualitative results for the ablation of our robust masked loss (Sec. 3.4
of the manuscript). These results demonstrate qualitatively our ablation study
in section 5.2 of the manuscript. The crops are taken from the ZRR dataset.
Best viewed with zoom.

(a) NoColor- (b) +U-Net  (c) +Recon- (d)  +Global- (¢) DSLR sRGB
Pred struct Context

Fig. 11: Qualitative results for the ablation of our color prediction network (Sec.
3.2 of the manuscript). These results demonstrate qualitatively our ablation
study in section 5.3 of the manuscript. The crops are taken from the ZRR
dataset. Best viewed with zoom.
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1c) Ours 1d) DSLR sRGB

2a) RAW Visualized 2b) LiteISPNet
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S Sy X

2c) Ours 2d) DSLR sRGB

Fig. 12: Full resolution results on our ISPW dataset. We compare our method
against the best performing competing method LiteI[SPNet [26]. Our approach
captures more details and more accurate colors w.r.t. the DSLR sRGB. On the
other hand, LiteISPNet produces dull colors and results in loss of detail. Best
viewed with zoom.
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(a) MWISPNet  (b) AWNet ) LiteISPNet ) Ours (e) DSLR sRGB

Fig. 13: Some more visual results for state-of-the-art comparison on the ZRR [9]
dataset. Best viewed with zoom.
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(a) MWISPNet  (b) AWNet  (c) LiteISPNet  (d) Ours  (e) DSLR sRGB

Fig. 14: Some more visual results for state-of-the-art comparison on our ISPW
dataset. Best viewed with zoom.
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Fig. 15: Example captures from our ISPW dataset. We show some example cap-
tures from the DSLR camera. As demonstrated, the ISPW dataset is collected
in various lighting and weather conditions which makes it a very challenging
dataset for learning and benchmarking the full ISP pipeline in the wild.

(a) Phone RAW (b) DSLR sRGB: (¢) DSLR sRGB: (d) DSLR sRGB:
EV =-1 EV =0 EV=1

Fig. 16: Example crops from our ISPW dataset. We collect DSLR sRGB’s at three
different exposure settings. Note that we use the DSLR sRGB at EV setting of
0 for training our Color conditional DSLR sRGB restoration network.
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| B By B B T Ty g j By W

Fig.17: We show the intermediate predictions in our framework for a few ex-
amples in the ZRR dataset. In the figure, x is the visualized RAW from the
phone and o’ = I'(z) (Eq. 10). The output of the Pre-processing network (Sec.
3.3 of the manuscript) Z is shown in column 3. Further, ¢ = G(x) is the pre-
dicted low-resolution color image by our color prediction network (Sec. 3.2 of the
manuscript) that integrates a global context transformer to integrate global cues
for predicting accurate colors. The pre-processed RAW Z is then color mapped to
¢ using our parametric color mapping formulation (Sec. 3.3 of the manuscript).
The color mapped image é = C(Z, ¢). During inference the parametric color map-
ping C aids in smoothing out the spurious color predictions that may occur in c.
Finally, our ISP network predicts the final DSLR quality § = F(z,¢). The last
column shows the DSLR sRGB (y) crop. Best viewed with zoom.
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Lo ‘_;ﬁ\‘ .

la) RAW 1b) encode-11  1c) encode-12  1d) encode-13  1le) encode-14

e

Yty

1f) decode-11  1g) decode-12  1h) decode-13  1i) decode-14 1j) ¢

Fig. 18: We show the visualized (by taking the first 3 channels) resulting feature
maps at each U-Net level (both encoder and the DSLR decoder) for an example
crop from our ISPW dataset. Here, encode-In signifies the feature map output
from our encoder block at level n. Similarly, decode-In is the feature map output
from our encoder block at level n. Best viewed with zoom.

(a) DSLR sRGB (ZRR (b) Ours-ZRR (c) Ours-ISPW
dataset)

Fig. 19: Testing our model trained on the ISPW dataset on two example crops
from the ZRR dataset. Ours-ISPW shows the results for the model trained on
our ISPW dataset. Ours-ZRR is the result of the model trained on the ZRR
dataset. produces
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(a) DSLR sRGB (b) Ours-ISPW (¢) Ours-ZRR
(ISPW dataset)

Fig. 20: Testing our model trained on the ZRR dataset on two example crops
from the ISPW dataset. Ours-ISPW shows the results for the model trained on
our ISPW dataset. Ours-ZRR is the result of the model trained on the ZRR
dataset.
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