Abstract
We propose a trainable Image Signal Processing (ISP) framework that produces DSLR quality images given RAW images captured by a smartphone. To address the color misalignments between training image pairs, we employ a color-conditional ISP network and optimize a novel parametric color mapping between each input RAW and reference DSLR image. During inference, we predict the target color image by designing a color prediction network with efficient Global Context Transformer modules. The latter effectively leverage global information to learn consistent color and tone mappings. We further propose a robust masked aligned loss to identify and discard regions with inaccurate motion estimation during training. Lastly, we introduce the ISP in the Wild (ISPW) dataset, consisting of weakly paired phone RAW and DSLR sRGB images. We extensively evaluate our method, setting a new state-of-the-art on two datasets. The code is available at https://github.com/4rdhendu/TransformPhone2DSLR.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abdelhamed, A., Lin, S., Brown, M.S.: A high-quality denoising dataset for smartphone cameras. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018
Bhat, G., Danelljan, M., Gool, L.V., Timofte, R.: Deep burst super-resolution. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2021, virtual, 19–25 June 2021. pp. 9209–9218. Computer Vision Foundation/IEEE (2021)
Bychkovsky, V., Paris, S., Chan, E., Durand, F.: Learning photographic global tonal adjustment with a database of input/output image pairs. In: The Twenty-Fourth IEEE Conference on Computer Vision and Pattern Recognition (2011)
Dai, L., Liu, X., Li, C., Chen, J.: AWNet: attentive wavelet network for image ISP. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12537, pp. 185–201. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-67070-2_11
Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981). https://doi.org/10.1145/358669.358692, http://doi.acm.org/10.1145/358669.358692
Ignatov, A., Gool, L.V., Timofte, R.: Replacing mobile camera ISP with a single deep learning model. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR Workshops 2020, Seattle, WA, USA, 14–19 June 2020, pp. 2275–2285. Computer Vision Foundation/IEEE (2020). https://doi.org/10.1109/CVPRW50498.2020.00276
Ignatov, A., Kobyshev, N., Timofte, R., Vanhoey, K., Van Gool, L.: Dslr-quality photos on mobile devices with deep convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3277–3285 (2017)
Ignatov, A., et al.: AIM 2020 challenge on learned image signal processing pipeline. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12537, pp. 152–170. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-67070-2_9
Jaegle, A., et al.: Perceiver IO: a general architecture for structured inputs & outputs. CoRR abs/2107.14795 (2021). http://arxiv.org/abs/2107.14795
Jaegle, A., Gimeno, F., Brock, A., Zisserman, A., Vinyals, O., Carreira, J.: Perceiver: general perception with iterative attention. CoRR abs/2103.03206 (2021). http://arxiv.org/abs/2103.03206
Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 015, Conference Track Proceedings (2015). http://arxiv.org/abs/1412.6980
Liu, P., Zhang, H., Lian, W., Zuo, W.: Multi-level wavelet convolutional neural networks. IEEE Access 7, 74973–74985 (2019)
Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of the International Conference on Computer Vision, Kerkyra, Corfu, Greece, September 20–25, 1999. pp. 1150–1157. IEEE Computer Society (1999). DOI: https://doi.org/10.1109/ICCV.1999.790410,http://doi.org/10.1109/ICCV.1999.790410
Meister, S., Hur, J., Roth, S.: Unflow: Unsupervised learning of optical flow with a bidirectional census loss. In: McIlraith, S.A., Weinberger, K.Q. (eds.) Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2–7, 2018. pp. 7251–7259. AAAI Press (2018), www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16502
Plotz, T., Roth, S.: Benchmarking denoising algorithms with real photographs. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 1586–1595 (2017)
Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., III, W.M.W., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015–18th International Conference Munich, Germany, October 5–9, 2015, Proceedings, Part III. Lecture Notes in Computer Science, vol. 9351, pp. 234–241. Springer (2015). https://doi.org/10.1007/978-3-319-24574-4_28,http://doi.org/10.1007/978-3-319-24574-4_28
Sun, D., Yang, X., Liu, M., Kautz, J.: Pwc-net: Cnns for optical flow using pyramid, warping, and cost volume. CoRR abs/1709.02371 (2017), http://arxiv.org/abs/1709.02371
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Guyon, I., von Luxburg, U., Bengio, S., Wallach, H.M., Fergus, R., Vishwanathan, S.V.N., Garnett, R. (eds.) Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4–9, 2017, Long Beach, CA, USA. pp. 5998–6008 (2017)
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004), 10.1109/TIP.2003.819861, http://doi.org/10.1109/TIP.2003.819861
Xing, Y., Qian, Z., Chen, Q.: Invertible image signal processing. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2021, virtual, June 19–25, 2021. pp. 6287–6296. Computer Vision Foundation / IEEE (2021)
Zamir, S.W., Arora, A., Khan, S.H., Hayat, M., Khan, F.S., Yang, M., Shao, L.: Cycleisp: Real image restoration via improved data synthesis. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13–19, 2020. pp. 2693–2702. Computer Vision Foundation / IEEE (2020). DOI: 10.1109/CVPR42600.2020.00277
Zhang, X., Chen, Q., Ng, R., Koltun, V.: Zoom to learn, learn to zoom. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16–20, 2019. pp. 3762–3770. Computer Vision Foundation / IEEE (2019). DOI: 10.1109/CVPR.2019.00388
Zhang, Z., Wang, H., Liu, M., Wang, R., Zhang, J., Zuo, W.: Learning raw-to-srgb mappings with inaccurately aligned supervision. CoRR abs/2108.08119 (2021), http://arxiv.org/abs/2108.08119
Acknowledgement
This work was supported by the ETH Zürich Fund (OK), Huawei Technologies Oy (Finland) and Alexander von Humboldt Foundation.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Shekhar Tripathi, A., Danelljan, M., Shukla, S., Timofte, R., Van Gool, L. (2022). Transform Your Smartphone into a DSLR Camera: Learning the ISP in the Wild. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13666. Springer, Cham. https://doi.org/10.1007/978-3-031-20068-7_36
Download citation
DOI: https://doi.org/10.1007/978-3-031-20068-7_36
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20067-0
Online ISBN: 978-3-031-20068-7
eBook Packages: Computer ScienceComputer Science (R0)