Skip to main content

Transform Your Smartphone into a DSLR Camera: Learning the ISP in the Wild

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13666))

Included in the following conference series:

Abstract

We propose a trainable Image Signal Processing (ISP) framework that produces DSLR quality images given RAW images captured by a smartphone. To address the color misalignments between training image pairs, we employ a color-conditional ISP network and optimize a novel parametric color mapping between each input RAW and reference DSLR image. During inference, we predict the target color image by designing a color prediction network with efficient Global Context Transformer modules. The latter effectively leverage global information to learn consistent color and tone mappings. We further propose a robust masked aligned loss to identify and discard regions with inaccurate motion estimation during training. Lastly, we introduce the ISP in the Wild (ISPW) dataset, consisting of weakly paired phone RAW and DSLR sRGB images. We extensively evaluate our method, setting a new state-of-the-art on two datasets. The code is available at https://github.com/4rdhendu/TransformPhone2DSLR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdelhamed, A., Lin, S., Brown, M.S.: A high-quality denoising dataset for smartphone cameras. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018

    Google Scholar 

  2. Bhat, G., Danelljan, M., Gool, L.V., Timofte, R.: Deep burst super-resolution. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2021, virtual, 19–25 June 2021. pp. 9209–9218. Computer Vision Foundation/IEEE (2021)

    Google Scholar 

  3. Bychkovsky, V., Paris, S., Chan, E., Durand, F.: Learning photographic global tonal adjustment with a database of input/output image pairs. In: The Twenty-Fourth IEEE Conference on Computer Vision and Pattern Recognition (2011)

    Google Scholar 

  4. Dai, L., Liu, X., Li, C., Chen, J.: AWNet: attentive wavelet network for image ISP. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12537, pp. 185–201. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-67070-2_11

    Chapter  Google Scholar 

  5. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981). https://doi.org/10.1145/358669.358692, http://doi.acm.org/10.1145/358669.358692

  6. Ignatov, A., Gool, L.V., Timofte, R.: Replacing mobile camera ISP with a single deep learning model. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR Workshops 2020, Seattle, WA, USA, 14–19 June 2020, pp. 2275–2285. Computer Vision Foundation/IEEE (2020). https://doi.org/10.1109/CVPRW50498.2020.00276

  7. Ignatov, A., Kobyshev, N., Timofte, R., Vanhoey, K., Van Gool, L.: Dslr-quality photos on mobile devices with deep convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3277–3285 (2017)

    Google Scholar 

  8. Ignatov, A., et al.: AIM 2020 challenge on learned image signal processing pipeline. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12537, pp. 152–170. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-67070-2_9

    Chapter  Google Scholar 

  9. Jaegle, A., et al.: Perceiver IO: a general architecture for structured inputs & outputs. CoRR abs/2107.14795 (2021). http://arxiv.org/abs/2107.14795

  10. Jaegle, A., Gimeno, F., Brock, A., Zisserman, A., Vinyals, O., Carreira, J.: Perceiver: general perception with iterative attention. CoRR abs/2103.03206 (2021). http://arxiv.org/abs/2103.03206

  11. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  12. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 015, Conference Track Proceedings (2015). http://arxiv.org/abs/1412.6980

  13. Liu, P., Zhang, H., Lian, W., Zuo, W.: Multi-level wavelet convolutional neural networks. IEEE Access 7, 74973–74985 (2019)

    Article  Google Scholar 

  14. Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of the International Conference on Computer Vision, Kerkyra, Corfu, Greece, September 20–25, 1999. pp. 1150–1157. IEEE Computer Society (1999). DOI: https://doi.org/10.1109/ICCV.1999.790410,http://doi.org/10.1109/ICCV.1999.790410

  15. Meister, S., Hur, J., Roth, S.: Unflow: Unsupervised learning of optical flow with a bidirectional census loss. In: McIlraith, S.A., Weinberger, K.Q. (eds.) Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2–7, 2018. pp. 7251–7259. AAAI Press (2018), www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16502

  16. Plotz, T., Roth, S.: Benchmarking denoising algorithms with real photographs. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 1586–1595 (2017)

    Google Scholar 

  17. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., III, W.M.W., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015–18th International Conference Munich, Germany, October 5–9, 2015, Proceedings, Part III. Lecture Notes in Computer Science, vol. 9351, pp. 234–241. Springer (2015). https://doi.org/10.1007/978-3-319-24574-4_28,http://doi.org/10.1007/978-3-319-24574-4_28

  18. Sun, D., Yang, X., Liu, M., Kautz, J.: Pwc-net: Cnns for optical flow using pyramid, warping, and cost volume. CoRR abs/1709.02371 (2017), http://arxiv.org/abs/1709.02371

  19. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Guyon, I., von Luxburg, U., Bengio, S., Wallach, H.M., Fergus, R., Vishwanathan, S.V.N., Garnett, R. (eds.) Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4–9, 2017, Long Beach, CA, USA. pp. 5998–6008 (2017)

    Google Scholar 

  20. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004), 10.1109/TIP.2003.819861, http://doi.org/10.1109/TIP.2003.819861

  21. Xing, Y., Qian, Z., Chen, Q.: Invertible image signal processing. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2021, virtual, June 19–25, 2021. pp. 6287–6296. Computer Vision Foundation / IEEE (2021)

    Google Scholar 

  22. Zamir, S.W., Arora, A., Khan, S.H., Hayat, M., Khan, F.S., Yang, M., Shao, L.: Cycleisp: Real image restoration via improved data synthesis. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13–19, 2020. pp. 2693–2702. Computer Vision Foundation / IEEE (2020). DOI: 10.1109/CVPR42600.2020.00277

    Google Scholar 

  23. Zhang, X., Chen, Q., Ng, R., Koltun, V.: Zoom to learn, learn to zoom. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16–20, 2019. pp. 3762–3770. Computer Vision Foundation / IEEE (2019). DOI: 10.1109/CVPR.2019.00388

    Google Scholar 

  24. Zhang, Z., Wang, H., Liu, M., Wang, R., Zhang, J., Zuo, W.: Learning raw-to-srgb mappings with inaccurately aligned supervision. CoRR abs/2108.08119 (2021), http://arxiv.org/abs/2108.08119

Download references

Acknowledgement

This work was supported by the ETH Zürich Fund (OK), Huawei Technologies Oy (Finland) and Alexander von Humboldt Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ardhendu Shekhar Tripathi .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 16579 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shekhar Tripathi, A., Danelljan, M., Shukla, S., Timofte, R., Van Gool, L. (2022). Transform Your Smartphone into a DSLR Camera: Learning the ISP in the Wild. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13666. Springer, Cham. https://doi.org/10.1007/978-3-031-20068-7_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20068-7_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20067-0

  • Online ISBN: 978-3-031-20068-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics