Skip to main content

Learning Deep Non-blind Image Deconvolution Without Ground Truths

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13666))

Included in the following conference series:

Abstract

Non-blind image deconvolution (NBID) is about restoring a latent sharp image from a blurred one, given an associated blur kernel. Most existing deep neural networks for NBID are trained over many ground truth (GT) images, which limits their applicability in practical applications such as microscopic imaging and medical imaging. This paper proposes an unsupervised deep learning approach for NBID which avoids accessing GT images. The challenge raised from the absence of GT images is tackled by a self-supervised reconstruction loss that approximates its supervised counterpart well. The possible errors of blur kernels are addressed by a self-supervised prediction loss based on intermediate samples as well as an ensemble inference scheme based on kernel perturbation. The experiments show that the proposed approach provides very competitive performance to existing supervised learning-based methods, no matter under accurate kernels or erroneous kernels.

Y. Quan—Is also with Pazhou Lab, Guangzhou 510335, China. He would like to thank the support in part by National Natural Science Foundation of China under Grant 61872151 and in part by Natural Science Foundation of Guangdong Province under Grant 2022A1515011755.

H. Ji—Would like thank the support in part by Singapore MOE AcRF under Grant R-146-000-315-114.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al-Kofahi, Y., Zaltsman, A., Graves, R., Marshall, W., Rusu, M.: A deep learning-based algorithm for 2-d cell segmentation in microscopy images. BMC Bioinf. 19(1), 1–11 (2018)

    Article  Google Scholar 

  2. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE Trans. Neural Netw. Learn. Syst. 33(5), 898–916 (2010)

    Google Scholar 

  3. Bigdeli, S.A., Jin, M., Favaro, P., Zwicker, M.: Deep mean-shift priors for image restoration. In: Advances in Neural Information Processing Systems, pp. 763–772 (2017)

    Google Scholar 

  4. Cai, J.F., Ji, H., Liu, C., Shen, Z.: High-quality curvelet-based motion deblurring from an image pair. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1566–1573 (2009)

    Google Scholar 

  5. Chen, D., Tachella, J., Davies, M.E.: Equivariant imaging: learning beyond the range space. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2021)

    Google Scholar 

  6. Chen, G., Zhu, F., Ann Heng, P.: An efficient statistical method for image noise level estimation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 477–485 (2015)

    Google Scholar 

  7. Chen, M., Quan, Y., Pang, T., Ji, H.: Nonblind image deconvolution via leveraging model uncertainty in an untrained deep neural network. Int. J. Comput. Vision 130, 1770–789 (2022). https://doi.org/10.1007/s11263-022-01621-9

  8. Cho, S., Lee, S.: Fast motion deblurring. In: Proceedings of the ACM SIGGRAPH Asia, pp. 1–8 (2009)

    Google Scholar 

  9. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-d transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007)

    Article  MathSciNet  Google Scholar 

  10. Dong, J., Roth, S., Schiele, B.: Deep wiener deconvolution: wiener meets deep learning for image deblurring. In: Advances in Neural Information Processing Systems, vol. 33 (2020)

    Google Scholar 

  11. Dong, J., Roth, S., Schiele, B.: Learning spatially-variant map models for non-blind image deblurring. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4886–4895 (2021)

    Google Scholar 

  12. Dong, W., Wang, P., Yin, W., Shi, G.: Denoising prior driven deep neural ketwork for image restoration. IEEE Trans. Neural Netw. Learn. Syst. 41(10), 2305–2318 (2019)

    Google Scholar 

  13. Dong, W., Zhang, L., Shi, G., Li, X.: Nonlocally centralized sparse representation for image restoration. IEEE Trans. Image Process. 22(4), 1620–1630 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Eboli, T., Sun, J., Ponce, J.: End-to-end interpretable learning of non-blind image deblurring. In: Proceedings of the European Conference on Computer Vision (2020)

    Google Scholar 

  15. Folberth, J., Becker, S.: Efficient adjoint computation for wavelet and convolution operators [lecture notes]. IEEE Sig. Process. Mag. 33(6), 135–147 (2016)

    Article  Google Scholar 

  16. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1026–1034 (2015)

    Google Scholar 

  17. Hendriksen, A.A., Pelt, D.M., Batenburg, K.J.: Noise2inverse: Self-supervised deep convolutional denoising for tomography. IEEE Trans. Comput. Imaging 6, 1320–1335 (2020)

    Article  MathSciNet  Google Scholar 

  18. Ji, H., Wang, K.: Robust image deblurring with an inaccurate blur kernel. IEEE Trans. Image Process. 21(4), 1624–1634 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jin, M., Roth, S., Favaro, P.: Noise-blind image deblurring. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3834–3842 (2017)

    Google Scholar 

  20. Krishnan, D., Fergus, R.: Fast image deconvolution using hyper-laplacian priors. Adv. Neural Inf. Process. Syst. 22, 1033–1041 (2009)

    Google Scholar 

  21. Kruse, J., Rother, C., Schmidt, U.: Learning to push the limits of efficient FFT-based image deconvolution. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4586–4594 (2017)

    Google Scholar 

  22. Lai, W.S., Huang, J.B., Hu, Z., Ahuja, N., Yang, M.H.: A comparative study for single image blind deblurring. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1701–1709 (2016)

    Google Scholar 

  23. Levin, A., Weiss, Y., Durand, F., Freeman, W.T.: Efficient marginal likelihood optimization in blind deconvolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2657–2664. IEEE (2011)

    Google Scholar 

  24. Li, W., Zhang, J., Dai, Q.: Exploring aligned complementary image pair for blind motion deblurring. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 273–280 (2011)

    Google Scholar 

  25. Lim, S., Park, H., Lee, S.E., Chang, S., Sim, B., Ye, J.C.: Cyclegan with a blur kernel for deconvolution microscopy: optimal transport geometry. IEEE Trans. Comput. Imaging 6, 1127–1138 (2020)

    Article  MathSciNet  Google Scholar 

  26. Meinhardt, T., Moller, M., Hazirbas, C., Cremers, D.: Learning proximal operators: using denoising networks for regularizing inverse imaging problems. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1781–1790 (2017)

    Google Scholar 

  27. Michaeli, T., Irani, M.: Blind deblurring using internal patch recurrence. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8691, pp. 783–798. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10578-9_51

    Chapter  Google Scholar 

  28. Nan, Y., Ji, H.: Deep learning for handling kernel/model uncertainty in image deconvolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2388–2397 (2020)

    Google Scholar 

  29. Nan, Y., Quan, Y., Ji, H.: Variational-EM-based deep learning for noise-blind image deblurring. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3626–3635 (2020)

    Google Scholar 

  30. Nayar, S.K., Ben-Ezra, M.: Motion-based motion deblurring. IEEE Trans. Pattern Anal. Mach. Intell. 26(6), 689–698 (2004)

    Article  Google Scholar 

  31. Pan, J., Sun, D., Pfister, H., Yang, M.H.: Blind image deblurring using dark channel prior. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1628–1636 (2016)

    Google Scholar 

  32. Pang, T., Quan, Y., Ji, H.: Self-supervised bayesian deep learning for image recovery with applications to compressive sensing. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12356, pp. 475–491. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58621-8_28

    Chapter  Google Scholar 

  33. Pang, T., Zheng, H., Quan, Y., Ji, H.: Recorrupted-to-recorrupted: unsupervised deep learning for image denoising. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2043–2052 (2021)

    Google Scholar 

  34. Perrone, D., Favaro, P.: Total variation blind deconvolution: the devil is in the details. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2909–2916 (2014)

    Google Scholar 

  35. Pronina, V., Kokkinos, F., Dylov, D.V., Lefkimmiatis, S.: Microscopy image restoration with deep wiener-kolmogorov filters. In: Proceedings of the European Conference on Computer Vision (2020)

    Google Scholar 

  36. Quan, Y., Ji, H., Shen, Z.: Data-driven multi-scale non-local wavelet frame construction and image recovery. J. Sci. Comput. 63(2), 307–329 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. Ren, D., Zuo, W., Zhang, D., Xu, J., Zhang, L.: Partial deconvolution with inaccurate blur kernel. IEEE Trans. Image Process. 27(1), 511–524 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  38. Ren, W., et al.: Deep non-blind deconvolution via generalized low-rank approximation. Adv. Neural Inf. Process. Syst. 31, 297–307 (2018)

    Google Scholar 

  39. Schmidt, U., Jancsary, J., Nowozin, S., Roth, S., Rother, C.: Cascades of regression tree fields for image restoration. IEEE Trans. Neural Netw. Learn. Syst. 38(4), 677–689 (2015)

    Google Scholar 

  40. Soltanayev, S., Chun, S.Y.: Training deep learning based denoisers without ground truth data. In: Advances in Neural Information Processing Systems (2018)

    Google Scholar 

  41. Sun, L., Cho, S., Wang, J., Hays, J.: Edge-based blur kernel estimation using patch priors. In: Proceedings of the IEEE International Conference on Computational Photography, pp. 1–8. IEEE (2013)

    Google Scholar 

  42. Vasu, S., Maligireddy, V.R., Rajagopalan, A.: Non-blind deblurring: handling kernel uncertainty with CNNs. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3272–3281 (2018)

    Google Scholar 

  43. Wang, W., Li, J., Ji, H.: Self-supervised deep image restoration via adaptive stochastic gradient langevin dynamics. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1989–1998 (2022)

    Google Scholar 

  44. Wang, Z., Wang, Z., Li, Q., Bilen, H.: Image deconvolution with deep image and kernel priors. In: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops (2019)

    Google Scholar 

  45. Whyte, O., Sivic, J., Zisserman, A.: Deblurring shaken and partially saturated images. Int. J. Comput. Vision 110(2), 185–201 (2014). https://doi.org/10.1007/s11263-014-0727-3

    Article  Google Scholar 

  46. Xia, Z., Chakrabarti, A.: Training image estimators without image ground-truth. In: Advances in Neural Information Processing Systems (2019)

    Google Scholar 

  47. Xu, J., Zhang, L., Zuo, W., Zhang, D., Feng, X.: Patch group based nonlocal self-similarity prior learning for image denoising. In: Proceedings of the IEEE international Conference on Computer Vision, pp. 244–252 (2015)

    Google Scholar 

  48. Xu, L., Jia, J.: Two-phase kernel estimation for robust motion deblurring. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6311, pp. 157–170. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15549-9_12

    Chapter  Google Scholar 

  49. Xu, L., Zheng, S., Jia, J.: Unnatural l0 sparse representation for natural image deblurring. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1107–1114 (2013)

    Google Scholar 

  50. Zhang, J., Pan, J., Lai, W.S., Lau, R., Yang, M.H.: Learning fully convolutional networks for iterative non-blind deconvolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6969–6977 (2017)

    Google Scholar 

  51. Zhang, K., Zuo, W., Gu, S., Zhang, L.: Learning deep CNN denoiser prior for image restoration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 2808–2817 (2017)

    Google Scholar 

  52. Zhang, Y., et al.: A poisson-gaussian denoising dataset with real fluorescence microscopy images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11710–11718 (2019)

    Google Scholar 

  53. Zukerman, J., Tirer, T., Giryes, R.: BP-DIP: a backprojection based deep image prior. In: Proceedings of the European Signal Processing Conference (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuojie Chen .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 15390 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Quan, Y., Chen, Z., Zheng, H., Ji, H. (2022). Learning Deep Non-blind Image Deconvolution Without Ground Truths. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13666. Springer, Cham. https://doi.org/10.1007/978-3-031-20068-7_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20068-7_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20067-0

  • Online ISBN: 978-3-031-20068-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics