Skip to main content

A Real World Dataset for Multi-view 3D Reconstruction

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13668))

Included in the following conference series:

Abstract

We present a dataset of 998 3D models of everyday tabletop objects along with their 847,000 real world RGB and depth images. Accurate annotation of camera pose and object pose for each image is performed in a semi-automated fashion to facilitate the use of the dataset in a myriad 3D applications like shape reconstruction, object pose estimation, shape retrieval etc. We primarily focus on learned multi-view 3D reconstruction due to the lack of appropriate real world benchmark for the task and demonstrate that our dataset can fill that gap. The entire annotated dataset along with the source code for the annotation tools and evaluation baselines is available at http://www.ocrtoc.org/3d-reconstruction.html.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahmadyan, A., Zhang, L., Ablavatski, A., Wei, J., Grundmann, M.: Objectron: A large scale dataset of object-centric videos in the wild with pose annotations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7822–7831 (2021)

    Google Scholar 

  2. Bogo, F., Romero, J., Loper, M., Black, M.J.: Faust: Dataset and evaluation for 3d mesh registration. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3794–3801 (2014)

    Google Scholar 

  3. Cadena, C., et al.: Past, present, and future of simultaneous localization and mapping: toward the robust-perception age. IEEE Trans. Rob. 32(6), 1309–1332 (2016)

    Article  Google Scholar 

  4. Calli, B., Walsman, A., Singh, A., Srinivasa, S., Abbeel, P., Dollar, A.M.: Benchmarking in manipulation research: Using the Yale-CMU-Berkeley object and model set. IEEE Robot. Autom. Mag. 22(3), 36–52 (2015)

    Article  Google Scholar 

  5. Cantzler, H.: Random sample consensus (RANSAC). Action and Behaviour, Division of Informatics, University of Edinburgh, Institute for Perception (1981)

    Google Scholar 

  6. Chang, A.X., et al.: ShapeNet: an information-rich 3d model repository. arXiv preprint arXiv:1512.03012 (2015)

  7. Choi, S., Zhou, Q.Y., Miller, S., Koltun, V.: A large dataset of object scans. arXiv preprint arXiv:1602.02481 (2016)

  8. Choy, C.B., Xu, D., Gwak, J.Y., Chen, K., Savarese, S.: 3D-R2N2: a unified approach for single and multi-view 3d object reconstruction. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 628–644. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_38

    Chapter  Google Scholar 

  9. Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Nießner, M.: ScanNet: Richly-annotated 3d reconstructions of indoor scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5828–5839 (2017)

    Google Scholar 

  10. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  11. Engel, J., Schöps, T., Cremers, D.: LSD-SLAM: large-scale direct monocular SLAM. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8690, pp. 834–849. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10605-2_54

    Chapter  Google Scholar 

  12. Fouhey, D.F., Gupta, A., Hebert, M.: Data-driven 3d primitives for single image understanding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3392–3399 (2013)

    Google Scholar 

  13. Fu, Q., Xu, Q., Ong, Y.S., Tao, W.: Geo-Neus: geometry-consistent neural implicit surfaces learning for multi-view reconstruction. arXiv preprint arXiv:2205.15848 (2022)

  14. Gao, X.S., Hou, X.R., Tang, J., Cheng, H.F.: Complete solution classification for the perspective-three-point problem. IEEE Trans. Pattern Anal. Mach. Intell. 25(8), 930–943 (2003)

    Article  Google Scholar 

  15. Gkioxari, G., Malik, J., Johnson, J.: Mesh R-CNN. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9785–9795 (2019)

    Google Scholar 

  16. Groueix, T., Fisher, M., Kim, V.G., Russell, B.C., Aubry, M.: A papier-mâché approach to learning 3d surface generation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 216–224 (2018)

    Google Scholar 

  17. Gwak, J., Choy, C.B., Chandraker, M., Garg, A., Savarese, S.: Weakly supervised 3d reconstruction with adversarial constraint. In: 2017 International Conference on 3D Vision (3DV), pp. 263–272. IEEE (2017)

    Google Scholar 

  18. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  19. Hodan, T., Haluza, P., Obdržálek, Š., Matas, J., Lourakis, M., Zabulis, X.: T-less: an RGB-D dataset for 6d pose estimation of texture-less objects. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 880–888. IEEE (2017)

    Google Scholar 

  20. Jensen, R., Dahl, A., Vogiatzis, G., Tola, E., Aanæs, H.: Large scale multi-view stereopsis evaluation. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 406–413. IEEE (2014)

    Google Scholar 

  21. Kar, A., Häne, C., Malik, J.: Learning a multi-view stereo machine. Adv. Neural. Inf. Process. Syst. 30, 1–11 (2017)

    Google Scholar 

  22. Knapitsch, A., Park, J., Zhou, Q.Y., Koltun, V.: Tanks and temples: benchmarking large-scale scene reconstruction. ACM Trans. Graph. (ToG) 36(4), 1–13 (2017)

    Article  Google Scholar 

  23. Kuznetsova, A., et al.: The open images dataset v4. Int. J. Comput. Vision 128(7), 1956–1981 (2020)

    Article  Google Scholar 

  24. Lai, K., Bo, L., Ren, X., Fox, D.: A large-scale hierarchical multi-view RGB-D object dataset. In: 2011 IEEE International Conference on Robotics and Automation, pp. 1817–1824 (2011). https://doi.org/10.1109/ICRA.2011.5980382

  25. Lei, J., Sridhar, S., Guerrero, P., Sung, M., Mitra, N., Guibas, L.J.: Pix2Surf: learning parametric 3D surface models of objects from images. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12363, pp. 121–138. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58523-5_8

    Chapter  Google Scholar 

  26. Lepetit, V., Moreno-Noguer, F., Fua, P.: EPNP: an accurate O(n) solution to the PNP problem. Int. J. Comput. Vision 81(2), 155–166 (2009)

    Article  Google Scholar 

  27. Lim, J.J., Pirsiavash, H., Torralba, A.: Parsing IKEA objects: fine pose estimation. In: 2013 IEEE International Conference on Computer Vision, pp. 2992–2999 (2013). https://doi.org/10.1109/ICCV.2013.372

  28. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  29. Matl, M.: Pyrender (2019). https://github.com/mmatl/pyrender

  30. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 405–421. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_24

    Chapter  Google Scholar 

  31. Moré, J.J.: The Levenberg-Marquardt algorithm: implementation and theory. In: Watson, G.A. (ed.) Numerical Analysis. LNM, vol. 630, pp. 105–116. Springer, Heidelberg (1978). https://doi.org/10.1007/BFb0067700

    Chapter  Google Scholar 

  32. Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: ORB-SLAM: a versatile and accurate monocular slam system. IEEE Trans. Rob. 31(5), 1147–1163 (2015)

    Article  Google Scholar 

  33. Niemeyer, M., Mescheder, L., Oechsle, M., Geiger, A.: Differentiable volumetric rendering: learning implicit 3d representations without 3d supervision. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3504–3515 (2020)

    Google Scholar 

  34. Pan, J., Han, X., Chen, W., Tang, J., Jia, K.: Deep mesh reconstruction from single RGB images via topology modification networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 9964–9973 (2019)

    Google Scholar 

  35. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, vol. 32, pp. 8024–8035. Curran Associates, Inc. (2019)

    Google Scholar 

  36. Ravi, N., et al.: Accelerating 3d deep learning with pytorch3d. arXiv:2007.08501 (2020)

  37. Reizenstein, J., Shapovalov, R., Henzler, P., Sbordone, L., Labatut, P., Novotny, D.: Common objects in 3d: Large-scale learning and evaluation of real-life 3d category reconstruction. In: International Conference on Computer Vision (2021)

    Google Scholar 

  38. Runz, M., et al.: Frodo: from detections to 3d objects. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 14720–14729 (2020)

    Google Scholar 

  39. Sarlin, P.E., DeTone, D., Malisiewicz, T., Rabinovich, A.: Superglue: learning feature matching with graph neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4938–4947 (2020)

    Google Scholar 

  40. Schönberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  41. Schönberger, J.L., Zheng, E., Frahm, J.-M., Pollefeys, M.: Pixelwise view selection for unstructured multi-view stereo. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 501–518. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_31

    Chapter  Google Scholar 

  42. Shilane, P., Min, P., Kazhdan, M., Funkhouser, T.: The Princeton shape benchmark. In: Proceedings Shape Modeling Applications, 2004, pp. 167–178. IEEE (2004)

    Google Scholar 

  43. Shrestha, R., Fan, Z., Su, Q., Dai, Z., Zhu, S., Tan, P.: MeshMVS: multi-view stereo guided mesh reconstruction. In: 2021 International Conference on 3D Vision (3DV), pp. 1290–1300. IEEE (2021)

    Google Scholar 

  44. Sun, X., et al.: Pix3d: Dataset and methods for single-image 3d shape modeling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2974–2983 (2018)

    Google Scholar 

  45. Tang, J., Han, X., Pan, J., Jia, K., Tong, X.: A skeleton-bridged deep learning approach for generating meshes of complex topologies from single RGB images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4541–4550 (2019)

    Google Scholar 

  46. Umeyama, S.: Least-squares estimation of transformation parameters between two point patterns. IEEE Trans. Pattern Anal. Mach. Intell. 13(4), 376–380 (1991). https://doi.org/10.1109/34.88573

    Article  Google Scholar 

  47. Varadarajan, V.S.: Lie Groups, Lie Algebras, and their Representations. Graduate Text in Mathematics. GTM, vol. 102. Springer Science & Business Media, New York (2013). https://doi.org/10.1007/978-1-4612-1126-6

  48. Wang, N., Zhang, Y., Li, Z., Fu, Y., Liu, W., Jiang, Y.-G.: Pixel2Mesh: generating 3d mesh models from single RGB images. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 55–71. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_4

    Chapter  Google Scholar 

  49. Wang, P., Liu, L., Liu, Y., Theobalt, C., Komura, T., Wang, W.: Neus: learning neural implicit surfaces by volume rendering for multi-view reconstruction. Adv. Neural. Inf. Process. Syst. 34, 27171–27183 (2021)

    Google Scholar 

  50. Wen, C., Zhang, Y., Li, Z., Fu, Y.: Pixel2mesh++: multi-view 3d mesh generation via deformation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1042–1051 (2019)

    Google Scholar 

  51. Xiang, Y., et al.: ObjectNet3D: a large scale database for 3d object recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 160–176. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_10

    Chapter  Google Scholar 

  52. Xiang, Y., Mottaghi, R., Savarese, S.: Beyond pascal: a benchmark for 3d object detection in the wild. In: IEEE Winter Conference on Applications Of Computer Vision, pp. 75–82. IEEE (2014)

    Google Scholar 

  53. Yao, Y., et al.: BlendedMVS: a large-scale dataset for generalized multi-view stereo networks. In: Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  54. Yao, Y., Schertler, N., Rosales, E., Rhodin, H., Sigal, L., Sheffer, A.: Front2back: single view 3d shape reconstruction via front to back prediction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 531–540 (2020)

    Google Scholar 

  55. Yariv, L., et al.: Multiview neural surface reconstruction by disentangling geometry and appearance. Adv. Neural. Inf. Process. Syst. 33, 2492–2502 (2020)

    Google Scholar 

  56. Zhou, Q.Y., Koltun, V.: Dense scene reconstruction with points of interest. ACM Trans. Graph. (ToG) 32(4), 1–8 (2013)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh Shrestha .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 15263 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shrestha, R., Hu, S., Gou, M., Liu, Z., Tan, P. (2022). A Real World Dataset for Multi-view 3D Reconstruction. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13668. Springer, Cham. https://doi.org/10.1007/978-3-031-20074-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20074-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20073-1

  • Online ISBN: 978-3-031-20074-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics