Skip to main content

PTSEFormer: Progressive Temporal-Spatial Enhanced TransFormer Towards Video Object Detection

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13668))

Included in the following conference series:

  • 2735 Accesses

Abstract

Recent years have witnessed a trend of applying context frames to boost the performance of object detection as video object detection. Existing methods usually aggregate features at one stroke to enhance the feature. These methods, however, usually lack spatial information from neighboring frames and suffer from insufficient feature aggregation. To address the issues, we perform a progressive way to introduce both temporal information and spatial information for an integrated enhancement. The temporal information is introduced by the temporal feature aggregation model (TFAM), by conducting an attention mechanism between the context frames and the target frame (i.e., the frame to be detected). Meanwhile, we employ a Spatial Transition Awareness Model (STAM) to convey the location transition information between each context frame and target frame. Built upon a transformer-based detector DETR, our PTSEFormer also follows an end-to-end fashion to avoid heavy post-processing procedures while achieving 88.1% mAP on the ImageNet VID dataset. Codes are available at https://github.com/Hon-Wong/PTSEFormer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cao, Z., Fu, C., Ye, J., Li, B., Li, Y.: HIFT: hierarchical feature transformer for aerial tracking. In: ICCV, pp. 15457–15466 (2021)

    Google Scholar 

  2. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  3. Chen, K., et al.: Optimizing video object detection via a scale-time lattice. In: CVPR, pp. 7814–7823 (2018)

    Google Scholar 

  4. Chen, Y., Cao, Y., Hu, H., Wang, L.: Memory enhanced global-local aggregation for video object detection. In: CVPR, pp. 10337–10346 (2020)

    Google Scholar 

  5. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)

  6. Dai, J., Li, Y., He, K., Sun, J.: R-FCN: object detection via region-based fully convolutional networks. In: Advances in Neural Information Processing Systems, vol. 29 (2016)

    Google Scholar 

  7. Deng, J., Pan, Y., Yao, T., Zhou, W., Li, H., Mei, T.: Relation distillation networks for video object detection. In: ICCV, pp. 7023–7032 (2019)

    Google Scholar 

  8. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  9. Duan, K., Bai, S., Xie, L., Qi, H., Huang, Q., Tian, Q.: CenterNet: keypoint triplets for object detection. In: ICCV, pp. 6569–6578 (2019)

    Google Scholar 

  10. Feichtenhofer, C., Pinz, A., Zisserman, A.: Detect to track and track to detect. In: ICCV, pp. 3038–3046 (2017)

    Google Scholar 

  11. Gong, T., et al.: Temporal ROI align for video object recognition. In: AAAI, pp. 1442–1450 (2021)

    Google Scholar 

  12. Guo, C., et al.: Progressive sparse local attention for video object detection. In: ICCV, pp. 3909–3918 (2019)

    Google Scholar 

  13. Han, M., Wang, Y., Chang, X., Qiao, Yu.: Mining inter-video proposal relations for video object detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12366, pp. 431–446. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58589-1_26

    Chapter  Google Scholar 

  14. Han, W., et al.: Seq-NMS for video object detection. arXiv preprint arXiv:1602.08465 (2016)

  15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  16. Jiang, Z., et al.: Learning where to focus for efficient video object detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12361, pp. 18–34. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58517-4_2

    Chapter  Google Scholar 

  17. Kang, K., et al.: T-CNN: tubelets with convolutional neural networks for object detection from videos. TCSVT 28(10), 2896–2907 (2017)

    Google Scholar 

  18. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  19. Li, B., Wu, W., Wang, Q., Zhang, F., Xing, J., Yan, J.: SiamRPN++: evolution of Siamese visual tracking with very deep networks. In: CVPR, pp. 4282–4291 (2019)

    Google Scholar 

  20. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)

    Google Scholar 

  21. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: ICCV, pp. 2980–2988 (2017)

    Google Scholar 

  22. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: NeurIPS, vol. 28 (2015)

    Google Scholar 

  23. Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: a metric and a loss for bounding box regression. In: CVPR, pp. 658–666 (2019)

    Google Scholar 

  24. Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vision 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  25. Shvets, M., Liu, W., Berg, A.C.: Leveraging long-range temporal relationships between proposals for video object detection. In: ICCV, pp. 9756–9764 (2019)

    Google Scholar 

  26. Stewart, R., Andriluka, M., Ng, A.Y.: End-to-end people detection in crowded scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2325–2333 (2016)

    Google Scholar 

  27. Vaswani, A., et al.: Attention is all you need. In: NeurIPS, vol. 30 (2017)

    Google Scholar 

  28. Wang, N., Zhou, W., Wang, J., Li, H.: Transformer meets tracker: exploiting temporal context for robust visual tracking. In: CVPR, pp. 1571–1580 (2021)

    Google Scholar 

  29. Wang, S., Zhou, Y., Yan, J., Deng, Z.: Fully motion-aware network for video object detection. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11217, pp. 557–573. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01261-8_33

    Chapter  Google Scholar 

  30. Wu, H., Chen, Y., Wang, N., Zhang, Z.: Sequence level semantics aggregation for video object detection. In: ICCV, pp. 9217–9225 (2019)

    Google Scholar 

  31. Xu, Z., Hrustic, E., Vivet, D.: CenterNet heatmap propagation for real-time video object detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12370, pp. 220–234. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58595-2_14

    Chapter  Google Scholar 

  32. Zhou, Q., et al.: TransVOD: end-to-end video object detection with spatial-temporal transformers. arXiv preprint arXiv:2201.05047 (2022)

  33. Zhu, H., Wei, H., Li, B., Yuan, X., Kehtarnavaz, N.: A review of video object detection: datasets, metrics and methods. Appl. Sci. 10(21), 7834 (2020)

    Article  Google Scholar 

  34. Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable DeTR: deformable transformers for end-to-end object detection. arXiv preprint arXiv:2010.04159 (2020)

  35. Zhu, X., Wang, Y., Dai, J., Yuan, L., Wei, Y.: Flow-guided feature aggregation for video object detection. In: ICCV, pp. 408–417 (2017)

    Google Scholar 

  36. Zhu, X., Xiong, Y., Dai, J., Yuan, L., Wei, Y.: Deep feature flow for video recognition. In: CVPR, pp. 2349–2358 (2017)

    Google Scholar 

Download references

Acknowledgements

This work was partly supported by MoE-China Mobile Research Fund Project (MCM20180702), the 111 Project (B07022 and Sheitc No. 150633) and the Shanghai Key Laboratory of Digital Media Processing and Transmissions. And part of this work was done while Han Wang performed as an intern at HIKVISION.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Song .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, H., Tang, J., Liu, X., Guan, S., Xie, R., Song, L. (2022). PTSEFormer: Progressive Temporal-Spatial Enhanced TransFormer Towards Video Object Detection. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13668. Springer, Cham. https://doi.org/10.1007/978-3-031-20074-8_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20074-8_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20073-1

  • Online ISBN: 978-3-031-20074-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics