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Abstract. Recent years have witnessed a trend of applying context
frames to boost the performance of object detection as video object de-
tection. Existing methods usually aggregate features at one stroke to
enhance the feature. These methods, however, usually lack spatial in-
formation from neighboring frames and suffer from insufficient feature
aggregation. To address the issues, we perform a progressive way to in-
troduce both temporal information and spatial information for an in-
tegrated enhancement. The temporal information is introduced by the
temporal feature aggregation model (TFAM), by conducting an atten-
tion mechanism between the context frames and the target frame (i.e.,
the frame to be detected). Meanwhile, we employ a Spatial Transi-
tion Awareness Model (STAM) to convey the location transition in-
formation between each context frame and target frame. Built upon a
transformer-based detector DETR, our PTSEFormer also follows an end-
to-end fashion to avoid heavy post-processing procedures while achiev-
ing 88.1% mAP on the ImageNet VID dataset. Codes are available at
https://github.com/Hon-Wong/PTSEFormer.
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1 Introduction

Video Object Detection (VOD) [34,30,36,33,4] has emerged as a hot topic in
computer vision. Given a target frame and its context frames, VOD aims to
detect objects in the target frame, with the compensation of observation from
context frames. By observing the same instance in different poses from context
frames, many hard cases, such as blurry appearance and background occlusion,
are possible to be tackled.

Previous works [4,13,11,33] usually aggregate features at one stroke, suffering
from insufficient utilization of temporal information. In particular, they employ
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Fig. 1. The differences between existing works and ours. Previous works usually con-
duct temporal feature aggregation at one stroke, lacking in spatial information and
suffering from insufficient feature aggregation. In contrast, our PTSEFormer utilizes
both spatial and temporal information and performs feature aggregation in a progres-
sive way.

isolated box-level associations [4,13,11] to enhance the instance feature of the
target frame only using the extracted features of proposals, ignoring the spatial
relations between frames. To diversify context frame features, those works put
effort into how to excavate information from long-range context frames. However,
as a common sense of human vision, information from a nearby time window is
enough for detection in most scenarios. Specifically, when distinguishing a blurry
object from the target frame, we often refer to the frame sliding near the target
frame temporally, instead of observing the whole video. In this way, how to fully
utilize the information from context frames, rather than enlarging the range of
context frames, should be valued in the first place.

In this paper, we propose PTSEFormer to tackle the problems mentioned
above. Motivated by DETR [2,35], PTSEFormer uses Transformer [27] as the
basic structure to avoid complicated post-processing (e.g., Seq-NMS [14], Tublet-
Linking [17], Viterbi [10], Tublet-Rescore [3]). In contrast to aggregating features
of the target frame and context frames at one stroke by attention layers [4,13,33]
and conducting box-level associations upon extracted proposals [4,13,11], PT-
SEFormer conducts a progressive way to focus on both the temporal information
and the spatial transition relations between frames. Specifically, Temporal Fea-
ture Aggregation Module is designed to introduce the temporal information
to enhance the feature of the target frame with different perspectives towards
the same objects in all the context frames. Spatial Transition Awareness
Module is designed for estimating the position transition of the objects be-
tween the target frame and each context frame, enhancing the target feature
with frame-to-frame spatial information. To build a balanced correlation model
upon transformer decoder, we further propose the Gated Correlation model,
which considers the imbalance caused by the residual connection layer and adds
a gate to fix it.

Furthermore, as an important design of DETR, object queries contain inher-
ent object position distribution learned from training data, and are fixed during
inferring. We propose the Query Assembling Module(QAM) to regress object
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queries directly from context frames. Due to the fact that it is more reasonable
to infer position from adjacent context frames, rather than from fixed parameters
decided by training data.

We conduct extensive experiments on ImageNet VID dataset [24] and achieve
a 4.9% absolute improvement on mAP compared to previous end-to-end state-
of-the-art method [13] and 3.3% absolute improvement on mAP compared to its
variant with post-processing when applied on a ResNet-101 backbone, showing
the effectiveness of our method.

2 Related Works

2.1 Vision Transformer

Recent years have witnessed great progress on vision transformers. ViT [8] first
introduces a transformer architecture to the image classification and draws much
attention. DETR [2,35] builds a transformer-based architecture for object detec-
tion, with delicately designed object queries to learn the position distribution of
objects. After successful applications, transformers have achieved leading perfor-
mance in many downstream tasks of computer vision. For instance, in visual ob-
ject tracking (VOT), TrDimp/TrSiam [28] modifies the transformer decoder for
correlation between features from images, as a replacement of classical correla-
tion model (i.e., depth-wise cross correlation [19]) in VOT. HiFT [1] also utilizes
the transformer decoder for correlation on hierarchical features extracted from
images via a CNN backbone. The multi-head attentions in the decoder seems
naturally suitable for feature correlation. However, we cast doubt on the direct
usage of the decoder as a feature fusion model for features in the same feature
space.

2.2 Video Object Detection

Object detection suffers from image deterioration problems, such as motion
blur, background occlusion, deformation, etc. To tackle this problem, many
works [25,4,11,13] explored to use temporal context frames to provide compensa-
tion guidance (i.e., the object at context frames with different viewpoints). Built
upon a two-stage detector (e.g., Faster-RCNN [22], R-FCN [6], FPN [20]), Early
works [4,13,11,31] conduct box-level associations and achieve remarkable suc-
cess. However, these methods highly rely on the features of proposals extracted
by the two-stage detector, lacking spatial information. In recent years, the rapid
progress of anchor-free object detectors obtain remarkable performance. We ob-
serve several attempts to introduce anchor-free methods to video object detection
and boost the performance by spatial information. CHP [32] uses an anchor-free
detector CenterNet [9] as a base detector and propagates its heat map by post-
processing to deliver the spatial information. Apparently, it ignores the support
from the temporal features. TransVOD [33] is the first to apply transformer
architecture [27] into VOD and builds upon DETR. However, suffering from in-
sufficient feature aggregation and lacking spatial information, its performance is
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Fig. 2. Overview of the proposed PTSEFormer. First, image features M are extracted
by a transformer-based encoder. The image features are further input to TFAM and
STAM to obtain temporal feature h; and spatial features { fi}iz_ r.L, and then are
progressively aggregated. Finally, the aggregated feature, together with regressed object
queries from QAM, is decoded for final detection result

inferior to those with box-level associations when applied on the same backbone.
To address the limitations mentioned above, we propose an end-to-end frame-
work with temporal-spatial feature aggregation design to better employ context
frames information.

3 PTSEFormer

3.1 Overview

The overview of PTSEFormer is shown in Figure 2. Given a target frame F;
and its context frames F¥ = {Fy4;}i=—r.., PTSEFormer detects the class and
bounding-box of objects at F;. To better explore the context information from
Ff, PTSEFormer extracts both temporal features (representing the motion of
objects) and spatial features (representing position and transformations of ob-
jects). Next, the temporal and spatial features are progressively aggregated. Then
a decoder learns to infer the class and bounding boxes from the aggregated fea-
ture and the object query. Particularly, our object query is conditioned on FY,
and thus leads to more accurate object position distribution.
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In Section 3.2, we introduce the details of encoding temporal and spatial
memories, including feature extraction and progressive aggregation. Next, Sec-
tion 3.3 introduces how to infer class and bounding-box of objects from the
aggregated feature. Finally, the details of learning PTSEFormer are described in
Section 3.4, including the total objective function and the network details.

3.2 Temporal and Spatial Encoding

We introduce how to extract temporal and spatial memories from the tar-
get frame F; and its context frames Ff. First, a transformer-based encoder
embeds F; and FY to latent feature maps respectively, termed as M, and
My; ={M,;}i=—r.r- Then our model obtains the temporal and spatial memo-
ries from M; and M7y by two modules: Temporal Feature Aggregation Module
(TFAM) and Spatial Transition Awareness Module (STAM). Finally, the tem-
poral and spatial memories are progressively aggregated. We describe the details
of each module below.

TFAM. As demonstrated in previous works [33,4,13,25], learning the temporal
relation between F; and Ff is beneficial for detecting objects with blurry ap-
pearance or distorted shape. Consequently, we propose TFAM to extract this
temporal memory h;, which is formulated as:

hy = C(M,, M), (1)

where C(-,-) is the correlation operator:

C(Q,V) = softmax( C\Q/I;;T
k

where Q € RVexde KV € RNv*dr and ‘4 represents the residual connection.
STAM. STAM is proposed to learn relative positional transition of objects from
a context frame Fyy; to the target frame F;. Since the object identity annotation
is unavailable in the VOD task, unsupervised learning of the relations of the
objects at Fyy; and F} is non-trivial.

A straightforward idea is to employ the correlation operator C(-) to model
the relative transitions between Fi,; and F;. However, the imbalance weight on

@ and V in Equation 2 makes it infeasible to match the objects at two frames.
Specifically, the weights before Q and V are 1 and softmax(%)7 respectively.
The average value of softmax(Q—\/%T) is decided by the size of ) and K. When
the size goes large, the weight is far less than 1, leading to severer imbalance
attention on @ and V. Commonly, this architecture is used for correlation be-
tween features from different space and dimensions, which naturally need biased
attention. However, in some recent researches [28,33,1], it is also used for corre-
lation between features in the same spaces without any modification. We believe
the imbalanced attention could do harm to the performance.

To address the limitation mentioned above and inspired by the gate control

design by GRU [5], we design a Gated Correlation operation, denoted as

WV +Q, (2)
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Fig. 3. Illustration of Correlation (left) and Gated Correlation (right).

CY9. By adding a gate control to the residual connection of the decoder, we can
change the weight before Q. Furthermore, to get the gate control awareness of
the input @ and V, the control weight must be decided by @ and K. Thus, we
pass @ and K through a fully connected gate layer for the weight. The process
can be changed into:

g _ QKT _
C —softmax(\/ﬁ)V—i-M@Q—i-(l M)oV, (3)
M =o(G(1Q V), )

where G(-) refers to the gated function, consisting of a fully connected function.
o(+) is the Sigmoid function. [, -] is the concatenation operation, and ® refers to
the Hadamard production. Note that @, K, V and M must be of the same size.
When initializing, the Sigmoid function in gate can project the output to (0, 1)
with a primal value of 0.5, conducting fair attention on both @ and V.

The final STAM can be formulated as:

fi=C9(M; M.y, (5)

where ¢ = —L : L, and ff is the extracted spatial memory.

Progressive Aggregation. We aggregate the h; and f! in a progressive way.
First, h; and f! are combined with the Correlation operation C(-) to generate a
temporal-spatial memory E;. The formulation is written as:

E,=C(h.{fi}i—r.L) (6)

By aggregating features from context frames, E; contains both long-term tem-
poral and spatial transition information. However, in some scenes, the context
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Fig. 4. llustration of the Query Assembling Model (QAM). We apply a shared shallow
decoder to combine the primal object queries and each context frame. All the output
from shallow decoders are concatenated to form the final object queries.

frames are likely to be low-quality and the spatial-temporal memory may be
useless and even misleading. In this situation, we should take more information
of the current frame instead of context frame. Thus, we use a Gated Correlation
between the feature of current frame and the temporal-spatial memory to ob-
tain the final enhanced memory R;. The operation is denoted as Residual Gated
Correlation, which can be written as:

R, = C/(Ey, M), (7)

3.3 Enhanced Memory Decoding

In original DETR, a group of learned embeddings is designed to learn the position
distribution of different objects. With each object query, the decoder decodes
one bounding box and its class on the memory. Following the same protocols,
we decode our enhanced memory R; with a transformer decoder. However, there
remains a question that the original object queries are fixed through time, cannot
benefit from the context frames. Thus, we propose a Query Assembling Model
to diversify the object query and convey the position distribution information
through time.

Query Assembling Model. Query Assembling Model aims at propagating
implicit position distribution information via object queries through time. As
primal object queries in DETR are fixed embeddings in the inference stage and
have no difference across frames, we apply a shallow correlation model to inherit
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location information of the primal object queries and diversify information from
features. The final object queries can be described as:

Q= [QP7 {SD(QZH MtJri)’i =-L: L}]v (8>

where @), is the primal object query, and SD is a shallow transformer decoder
with 2 layers. [, -] is the concatenation operation.

3.4 Learning PTSEFormer

Following DETR, we adopt a Hungarian algorithm [26] to calculate the match-
ing cost between the ground truths and predictions. The objective function is
formulated as follows:

L= )\clsﬁcls + Abo:}c‘cboa:, (9)

Ebom = )\Ll»CLl + Agiouﬁgioua (10)

where L, is focal loss [21] for classification. L£11, Lgio, represent the L1 loss and
GIoU loss [23] for bounding box regression, respectively. s, Apoz, AL1, Agiou

are hyper-parameters to balance the multi-task losses.

Network Details. PTSEFormer is built upon the DETR with several modifi-
cations. The number of layers in the encoder and decoder is decreased to 2 for a
trade-off between speed and precision. Notice that our method also adopts multi-
scale features to boost the performance for detecting small objects. We adopt
the ResNet models as our backbones. In particular, we adopt ResNet-101 [15] for
a fair comparison with previous works. All the components (i.e., TFAM, STAM,
Correlation and Gated correlation) also have a two-layer structure. The number
of heads in multi-head attention is fixed as 6 and the number of primal object
queries is set to be 100, the same as the original DETR.

4 Experiments

4.1 Implement Details

Dataset and Metric. For a fair and convincing comparison, we conduct our
experiments on ImageNet VID dataset [24] which is a large-scale public dataset
for video object detection and contains more than 1M frames for training and
more than 100k frames for validation. In particular, we train our model on the
training split of ImageNet VID and DET dataset [24] following common proto-
cols. Same as previous works [4,33], we adopt mean average precision (mAP) as
our metric.

Training Details. We train our PTSEFormer on 8 GPUs of Tesla V100 with
Adam [18], and each GPU holds one target frame and its reference frames. The
whole training procedure lasts for 50 epochs, each taking almost 1.5 hours. The
initial learning rate is le-4, with a drop in the 40th epoch to le-5. For each target
frame, we randomly sample 2 frames from a sliding window with a length of 25
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Methods Base Detector Stages Backbone mAP(%)
DFF [37] R-FCN 2 ResNet-50 70.4
FGFA [36]  R-FCN 2 ResNet-50  74.0
RDN [7] Faster-RCNN 2 ResNet-50 76.7
MEGA [1] Faster-RCNN 2 ResNet-50 77.3
TransVOD [33] Deformable DETR 1  ResNet-50 79.9
OURS Deformable DETR 1  ResNet-50 87.4

Table 1. End-to-end methods comparisons (with ResNet-50 backbone).

Methods Base Detector Stages Backbone mAP(%)
LLTR [27] FPN 2 ResNet-101  81.0
DFF [37] R-FON 2 ResNet-101  73.0
D&T [10] R-FCN 2 ResNet-101  75.8
LSTS [16] R-FCN 2 ResNet-101  77.2
FGFA [30] R-FCN 2 ResNet-101  76.3
SELSA [31] Faster-RCNN 2 ResNet-101  80.3
TROI [11] + SELSA [31] Faster-RCNN 2 ResNet-101  82.0
MEGA [4] Faster-RCNN 2 ResNet-101  82.9
HVRNet [13] Faster-RCNN 2 ResNet-101  83.2
CHP [32] CenterNet 1  ResNet-101  76.7
TransVOD ([33] Deformable DETR 1  ResNet-101  81.9
OURS Deformable DETR 1  ResNet-101  88.1

Table 2. End-to-end methods comparisons (with ResNet-101 backbone).

as the reference frames. The input images are all resized to hold a shorter size of
800 pixels without any other extra data augmentation applied. All the networks
including the single frame baseline are trained from the very beginning with a
pre-trained backbone.

4.2 State-of-the-art Comparison

We first compare our PTSEFomer with several state-of-the-art methods in an
end-to-end fashion. As shown in Table 1 and Table 2, we group these methods
into two categories by their backbones. Previous end-to-end methods are also
mostly built upon a two-stage detector without a post-processing procedure for
VOD. The existing one-stage based VOD approaches, however, fall behind. Built
upon a one-stage detector, we achieve much higher performance on mAP than
existing methods with a magnificent margin. Reasonably, the larger backbone
boosts the performance of all the methods, including ours. As illustrated in
Table 1 and Table 2, Our PTSEFomer leads the performance with ResNet-50
and ResNet-101 [15].

We also compare our PTSEFormer with several state-of-the-art methods
with post-processing procedures in Table 3. Post-processing proves useful in
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Methods Base Detector Stages Backbone Post-processing mAP (%)
PSLA [12] R-FCN 2 ResNet-101 Seq-NMS 81.4
D&T [10] R-FCN 2 ResNet-101 Viterbi 79.8
MANet [29] R-FCN 2 ResNet-101 Seq-NMS 80.3
Scale-Time Lattice [3] R-FCN 2 ResNet-101 Tublet-Rescore  79.6
FGFA [30] R-FCN 2 ResNet-101 Seq-NMS 78.4
SELSA [31] Faster-RCNN 2 ResNet-101 Seq-NMS 82.5
MEGA [1] Faster-RCNN 2 ResNet-101 Seq-NMS 84.5
HVRNet [13] Faster-RCNN 2 ResNet-101 Seq-NMS 84.8
CHP [31] CenterNet 1 ResNet-101 Seq-NMS 78.4
TransVOD [33] Deformable DETR 1  ResNet-101 - 81.9
OURS Deformable DETR 1  ResNet-101 - 88.1

Table 3. State-of-the-art methods comparisons (with Post-processing).

Method STAM TFAM mAP(%)
Single Frame Baseline [35] X X 81.2
PTSEFormer v X 84.5
PTSEFormer v v 87.4

Table 4. Ablation studies of STAM and TFAM.

many VOD methods, especially in those built upon an anchor-based detector.
Indeed, most existing methods have their versions with post-processing to boost
the performance. For instance, the most widely used post-processing, Seq-NMS,
conducts an NMS operation through a sequence, boosting the mAP by 1%-2%.
However, those post-processing procedures, though prove effective, demand ex-
tra computations. Thus, our PTSEFormer obtains an end-to-end structure. We
declare that even we do not adopt post-processing, our method still obtains the
best score on mAP.

4.3 Ablation Studies

Considering the speed, we adopt the ResNet-50 model as our backbone for ab-
lation study. The effectiveness of each component of PTSEFormer is verified
independently.

TFAM and STAM. To verify the effectiveness of the TFAM and STAM, we
conduct ablation studies on both, respectively. As shown in Table 4, we add our
STAM model and TFAM model step by step to verify the effectiveness of both.
The use of STAM improves the mAP by 3.3%, performing spatial relations be-
tween the target frame and each reference frame and offering spatial transferring
information. As mentioned above, TFAM conducts a temporal feature aggrega-
tion, providing the temporal memory of the target frame. The TFAM leads to
an increase of 2.9% compared with only applying STAM.
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QAM GatedCorr RGC Multi-scale mAP (%)

X v v v 86.1
v X v v 86.7
v v X v 86.3
v v v X 86.4
v v v v 87.4

Table 5. Ablation studies on QAM, Gated Correlation, RGC and Multi-scale.

Query Assembling Model. Query Assembling Model carries the spatial in-
formation through time, offering implicit track information. The original object
queries in DETR are fixed embeddings, expected to learn the position distribu-
tion of the objects in the dataset. We compare QAM with the original object
queries in DETR in our experiment by replacing the QAM with original object
queries. By comparing line 1 and line 5 in Table 5, results have shown the assis-
tance from the specially designed QAM by an improvement of 1.3% on mAP.
Gated Correlation. To alleviate the imbalanced attention on Key and Value of
the transformer decoder as a correlation model, we propose Gated Correlation to
carry out a relation between temporal memory and spatial memories. To prove
it useful, we replace it with the original transformer decoder. The results show
a little drop in mAP which is illustrated in line 2 and line 5 in Table 5.
Residual Gated Correlation. The Residual Gated Correlation model is de-
signed for gating out the memories from low-quality reference frames and boosts
the performance of our method. We also investigate it in our experiment and
the results from line 3 and line 5 in Table 5 show its positive influence on the
performance. In particular, application of Residual Gated Correlation leads to a
1.1% increasement on mAP.

Multi-scale. Similar to the original DETR, the designs of our methods also
benefit from the multi-scale features. We obtain 1% increment on mAP with a
multi-scale architecture by comparing line 4 and line 5 in Table 5.

4.4 Visualization

Feature Visualization. We first visualize the feature maps of our network to
figure out how our TFAM and STAM work. As depicted in Figure 5, we demon-
strate three target frames and their corresponding reference frames and feature
maps, respectively. The first column shows the original input frames (i.e., tar-
get frame and its two reference frames, from top to bottom), and the second
column shows the original memories after a shared backbone and encoder, re-
ferred to as M; and M, ;. Obviously, it is hard to distinguish the object from
the background on these feature maps. The third column shows the temporal
memory T'; and the spatial memories S ;. Compared with the original memory
M, it is clear that the T'; has much more attention on the target objects, which
indicates that the temporal information does contribute to the distinguishing be-
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Fig. 6. Results Visualization. Our results are in the odd row, and single frame detector
DETR results as baseline are in the even row. As shown in figure, our method is more
robust against various image deterioration(e.g.,0cclusion, deformation).

tween foreground and background. The last column shows the temporal-spatial
memory E;, R; after the Residual Gated Correlation and the detection results
from top to bottom. Notice the color of the feature map indicates the value.
Observing the the original memory M, the temporal memory T'; and the final
enhanced memory Ry, it is easy to find a trend that the values of foreground
and background become more easy to separate. The temporal information con-
tributes to recognizing a object by introducing different poses of it. Furthermore,
the spatial information helps our PTSEFormer to locate objects with higher con-
fidence score by using spatial transition information. We declare that the reason
of such excellent results is the contribution of temporal and spatial information
from our TFAM and STAM.

Results Visualization. We present the results of both the single frame baseline
method and our PTSEFormer in Figure 6. In particular, the detection results
are exhibited in the time order. Compared with the single frame baseline method
DETR, Our method shows the priority towards the image deterioration prob-
lems. By exploiting the temporal and spatial information, we get a higher confi-
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dence score in normal situations and behave much better dealing with occlusion
and posture deformation. For example, when the face of a hamster gets occluded
by the background, the baseline single frame detector is confused about the cat-
egory, and easily fooled to predict it as a domestic cat. However, its appearances
in context frames are clear and easy to recognize, so our method succeeds in pre-
dicting the right category by introducing temporal information. In the second
video, the detector is expected to detect several cars and a bus. Interfered by
the background and occluded by a car, the baseline method fails at detection in
some frames. In contrast, with the help of spatial information, our method can
sense the motion of the bus and cars and produce the correct results. In the third
video, when two whales get too close, it is hard for the baseline detector to rec-
ognize both, causing false detection. In this situation, our PTSEFormer behaves
much better according to the temporal-spatial enhancement. It is necessary to
introduce temporal-spatial information in this situation to better distinguish one
object from another. Consequently, our PTSEFormer achieves much better per-
formance than the single frame baseline method thanks to the temporal-spatial
information.

5 Conclusion

In this work, we propose a progressive temporal-spatial enhanced transformer
towards video object detection. Based on a one-stage object detector DETR,
we boost the performance with proper design of introducing progressive feature
aggregation. Temporal information and spatial information are proved useful to
improve the robustness of detector against image deterioration. We also conduct
extensive experiments on the public dataset ImageNet VID to verify the effec-
tiveness of our method. We hope our work can shed light on the research on
VOD applying anchor-free approaches.
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No. 150633) and the Shanghai Key Laboratory of Digital Media Processing and
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