Abstract
Recent years have witnessed a trend of applying context frames to boost the performance of object detection as video object detection. Existing methods usually aggregate features at one stroke to enhance the feature. These methods, however, usually lack spatial information from neighboring frames and suffer from insufficient feature aggregation. To address the issues, we perform a progressive way to introduce both temporal information and spatial information for an integrated enhancement. The temporal information is introduced by the temporal feature aggregation model (TFAM), by conducting an attention mechanism between the context frames and the target frame (i.e., the frame to be detected). Meanwhile, we employ a Spatial Transition Awareness Model (STAM) to convey the location transition information between each context frame and target frame. Built upon a transformer-based detector DETR, our PTSEFormer also follows an end-to-end fashion to avoid heavy post-processing procedures while achieving 88.1% mAP on the ImageNet VID dataset. Codes are available at https://github.com/Hon-Wong/PTSEFormer.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Cao, Z., Fu, C., Ye, J., Li, B., Li, Y.: HIFT: hierarchical feature transformer for aerial tracking. In: ICCV, pp. 15457–15466 (2021)
Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13
Chen, K., et al.: Optimizing video object detection via a scale-time lattice. In: CVPR, pp. 7814–7823 (2018)
Chen, Y., Cao, Y., Hu, H., Wang, L.: Memory enhanced global-local aggregation for video object detection. In: CVPR, pp. 10337–10346 (2020)
Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)
Dai, J., Li, Y., He, K., Sun, J.: R-FCN: object detection via region-based fully convolutional networks. In: Advances in Neural Information Processing Systems, vol. 29 (2016)
Deng, J., Pan, Y., Yao, T., Zhou, W., Li, H., Mei, T.: Relation distillation networks for video object detection. In: ICCV, pp. 7023–7032 (2019)
Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)
Duan, K., Bai, S., Xie, L., Qi, H., Huang, Q., Tian, Q.: CenterNet: keypoint triplets for object detection. In: ICCV, pp. 6569–6578 (2019)
Feichtenhofer, C., Pinz, A., Zisserman, A.: Detect to track and track to detect. In: ICCV, pp. 3038–3046 (2017)
Gong, T., et al.: Temporal ROI align for video object recognition. In: AAAI, pp. 1442–1450 (2021)
Guo, C., et al.: Progressive sparse local attention for video object detection. In: ICCV, pp. 3909–3918 (2019)
Han, M., Wang, Y., Chang, X., Qiao, Yu.: Mining inter-video proposal relations for video object detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12366, pp. 431–446. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58589-1_26
Han, W., et al.: Seq-NMS for video object detection. arXiv preprint arXiv:1602.08465 (2016)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Jiang, Z., et al.: Learning where to focus for efficient video object detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12361, pp. 18–34. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58517-4_2
Kang, K., et al.: T-CNN: tubelets with convolutional neural networks for object detection from videos. TCSVT 28(10), 2896–2907 (2017)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Li, B., Wu, W., Wang, Q., Zhang, F., Xing, J., Yan, J.: SiamRPN++: evolution of Siamese visual tracking with very deep networks. In: CVPR, pp. 4282–4291 (2019)
Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)
Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: ICCV, pp. 2980–2988 (2017)
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: NeurIPS, vol. 28 (2015)
Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: a metric and a loss for bounding box regression. In: CVPR, pp. 658–666 (2019)
Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vision 115(3), 211–252 (2015)
Shvets, M., Liu, W., Berg, A.C.: Leveraging long-range temporal relationships between proposals for video object detection. In: ICCV, pp. 9756–9764 (2019)
Stewart, R., Andriluka, M., Ng, A.Y.: End-to-end people detection in crowded scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2325–2333 (2016)
Vaswani, A., et al.: Attention is all you need. In: NeurIPS, vol. 30 (2017)
Wang, N., Zhou, W., Wang, J., Li, H.: Transformer meets tracker: exploiting temporal context for robust visual tracking. In: CVPR, pp. 1571–1580 (2021)
Wang, S., Zhou, Y., Yan, J., Deng, Z.: Fully motion-aware network for video object detection. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11217, pp. 557–573. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01261-8_33
Wu, H., Chen, Y., Wang, N., Zhang, Z.: Sequence level semantics aggregation for video object detection. In: ICCV, pp. 9217–9225 (2019)
Xu, Z., Hrustic, E., Vivet, D.: CenterNet heatmap propagation for real-time video object detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12370, pp. 220–234. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58595-2_14
Zhou, Q., et al.: TransVOD: end-to-end video object detection with spatial-temporal transformers. arXiv preprint arXiv:2201.05047 (2022)
Zhu, H., Wei, H., Li, B., Yuan, X., Kehtarnavaz, N.: A review of video object detection: datasets, metrics and methods. Appl. Sci. 10(21), 7834 (2020)
Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable DeTR: deformable transformers for end-to-end object detection. arXiv preprint arXiv:2010.04159 (2020)
Zhu, X., Wang, Y., Dai, J., Yuan, L., Wei, Y.: Flow-guided feature aggregation for video object detection. In: ICCV, pp. 408–417 (2017)
Zhu, X., Xiong, Y., Dai, J., Yuan, L., Wei, Y.: Deep feature flow for video recognition. In: CVPR, pp. 2349–2358 (2017)
Acknowledgements
This work was partly supported by MoE-China Mobile Research Fund Project (MCM20180702), the 111 Project (B07022 and Sheitc No. 150633) and the Shanghai Key Laboratory of Digital Media Processing and Transmissions. And part of this work was done while Han Wang performed as an intern at HIKVISION.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Wang, H., Tang, J., Liu, X., Guan, S., Xie, R., Song, L. (2022). PTSEFormer: Progressive Temporal-Spatial Enhanced TransFormer Towards Video Object Detection. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13668. Springer, Cham. https://doi.org/10.1007/978-3-031-20074-8_42
Download citation
DOI: https://doi.org/10.1007/978-3-031-20074-8_42
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20073-1
Online ISBN: 978-3-031-20074-8
eBook Packages: Computer ScienceComputer Science (R0)