Skip to main content

Long-Tailed Instance Segmentation Using Gumbel Optimized Loss

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Abstract

Major advancements have been made in the field of object detection and segmentation recently. However, when it comes to rare categories, the state-of-the-art methods fail to detect them, resulting in a significant performance gap between rare and frequent categories. In this paper, we identify that Sigmoid or Softmax functions used in deep detectors are a major reason for low performance and are sub-optimal for long-tailed detection and segmentation. To address this, we develop a Gumbel Optimized Loss (GOL), for long-tailed detection and segmentation. It aligns with the Gumbel distribution of rare classes in imbalanced datasets, considering the fact that most classes in long-tailed detection have low expected probability. The proposed GOL significantly outperforms the best state-of-the-art method by \(1.1\%\) on AP, and boosts the overall segmentation by \(9.0\%\) and detection by \(8.0\%\), particularly improving detection of rare classes by \(20.3\%\), compared to Mask-RCNN, on LVIS dataset. Code available at: https://github.com/kostas1515/GOL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Here we omit obj for simplicity since \(P(y,obj,u) = P(y,u)\) due to that y shows there is object occurrence obj.

References

  1. Bridge, J., et al.: Introducing the GEV activation function for highly unbalanced data to develop COVID-19 diagnostic models. IEEE J. Biomed. Health Inform. 24(10), 2776–2786 (2020)

    Article  Google Scholar 

  2. Cai, Z., Vasconcelos, N.: Cascade R-CNN: high quality object detection and instance segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 43(5), 1483–1498 (2019)

    Article  Google Scholar 

  3. Cao, K., Wei, C., Gaidon, A., Arechiga, N., Ma, T.: Learning imbalanced datasets with label-distribution-aware margin loss. In: Advances in Neural Information Processing Systems (2019)

    Google Scholar 

  4. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

    Article  MATH  Google Scholar 

  5. Chen, K., et al.: Hybrid task cascade for instance segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4974–4983 (2019)

    Google Scholar 

  6. Chen, K., et al.: MMDetection: open MMLab detection toolbox and benchmark. arXiv preprint arXiv:1906.07155 (2019)

  7. Cubuk, E.D., Zoph, B., Mane, D., Vasudevan, V., Le, Q.V.: Autoaugment: learning augmentation strategies from data. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 113–123 (2019)

    Google Scholar 

  8. Cui, Y., Jia, M., Lin, T.Y., Song, Y., Belongie, S.: Class-balanced loss based on effective number of samples. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9268–9277 (2019)

    Google Scholar 

  9. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  10. Feng, C., Zhong, Y., Huang, W.: Exploring classification equilibrium in long-tailed object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3417–3426 (2021)

    Google Scholar 

  11. Gupta, A., Dollar, P., Girshick, R.: LVIS: a dataset for large vocabulary instance segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5356–5364 (2019)

    Google Scholar 

  12. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  14. Hsieh, T.I., Robb, E., Chen, H.T., Huang, J.B.: Droploss for long-tail instance segmentation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 1549–1557 (2021)

    Google Scholar 

  15. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  16. Kang, B., et al.: Decoupling representation and classifier for long-tailed recognition. In: Eighth International Conference on Learning Representations (ICLR) (2020)

    Google Scholar 

  17. Khan, S.H., Hayat, M., Bennamoun, M., Sohel, F.A., Togneri, R.: Cost-sensitive learning of deep feature representations from imbalanced data. IEEE Trans. Neural Netw. Learn. Syst. 29(8), 3573–3587 (2017)

    Google Scholar 

  18. Kim, B., Kim, J.: Adjusting decision boundary for class imbalanced learning. IEEE Access 8, 81674–81685 (2020)

    Article  Google Scholar 

  19. Kotz, S., Nadarajah, S.: Extreme Value Distributions: Theory and Applications. World Scientific, Singapore (2000)

    Book  MATH  Google Scholar 

  20. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  21. Li, Y., et al.: Overcoming classifier imbalance for long-tail object detection with balanced group softmax. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10991–11000 (2020)

    Google Scholar 

  22. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  23. Liu, Z., Miao, Z., Zhan, X., Wang, J., Gong, B., Yu, S.X.: Large-scale long-tailed recognition in an open world. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2537–2546 (2019)

    Google Scholar 

  24. Mahajan, D., et al.: Exploring the limits of weakly supervised pretraining. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 181–196 (2018)

    Google Scholar 

  25. Menon, A.K., Jayasumana, S., Rawat, A.S., Jain, H., Veit, A., Kumar, S.: Long-tail learning via logit adjustment. In: International Conference on Learning Representations (2021). https://openreview.net/forum?id=37nvvqkCo5

  26. Mullapudi, R.T., Poms, F., Mark, W.R., Ramanan, D., Fatahalian, K.: Background splitting: finding rare classes in a sea of background. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8043–8052 (2021)

    Google Scholar 

  27. Oksuz, K., Cam, B.C., Kalkan, S., Akbas, E.: Imbalance problems in object detection: a review. IEEE Trans. Pattern Anal. Mach. Intell. 43(10), 3388–3415 (2020)

    Article  Google Scholar 

  28. Pan, T.Y., et al.: On model calibration for long-tailed object detection and instance segmentation. In: Advances in Neural Information Processing Systems, vol. 34 (2021)

    Google Scholar 

  29. Peng, J., Bu, X., Sun, M., Zhang, Z., Tan, T., Yan, J.: Large-scale object detection in the wild from imbalanced multi-labels. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9709–9718 (2020)

    Google Scholar 

  30. Ren, J., et al.: Balanced meta-softmax for long-tailed visual recognition. In: Proceedings of Neural Information Processing Systems(NeurIPS) (2020)

    Google Scholar 

  31. Shen, L., Lin, Z., Huang, Q.: Relay backpropagation for effective learning of deep convolutional neural networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 467–482. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_29

    Chapter  Google Scholar 

  32. Tan, J., Lu, X., Zhang, G., Yin, C., Li, Q.: Equalization loss v2: a new gradient balance approach for long-tailed object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1685–1694 (2021)

    Google Scholar 

  33. Tan, J., et al.: Equalization loss for long-tailed object recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11662–11671 (2020)

    Google Scholar 

  34. Tang, K., Huang, J., Zhang, H.: Long-tailed classification by keeping the good and removing the bad momentum causal effect. Adv. Neural. Inf. Process. Syst. 33, 1513–1524 (2020)

    Google Scholar 

  35. Wang, J., et al.: Seesaw loss for long-tailed instance segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9695–9704 (2021)

    Google Scholar 

  36. Wang, T., et al.: The devil is in classification: a simple framework for long-tail instance segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12359, pp. 728–744. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58568-6_43

    Chapter  Google Scholar 

  37. Wang, T., Zhu, Y., Zhao, C., Zeng, W., Wang, J., Tang, M.: Adaptive class suppression loss for long-tail object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3103–3112 (2021)

    Google Scholar 

  38. Wu, J., Song, L., Wang, T., Zhang, Q., Yuan, J.: Forest R-CNN: large-vocabulary long-tailed object detection and instance segmentation. In: Proceedings of the 28th ACM International Conference on Multimedia, pp. 1570–1578 (2020)

    Google Scholar 

  39. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1492–1500 (2017)

    Google Scholar 

  40. Zhang, S., Li, Z., Yan, S., He, X., Sun, J.: Distribution alignment: a unified framework for long-tail visual recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2361–2370 (2021)

    Google Scholar 

  41. Zhou, X., Koltun, V., Krähenbühl, P.: Probabilistic two-stage detection. arXiv preprint arXiv:2103.07461 (2021)

  42. Zou, Y., Yu, Z., Kumar, B., Wang, J.: Unsupervised domain adaptation for semantic segmentation via class-balanced self-training. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 289–305 (2018)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) Centre for Doctoral Training in Distributed Algorithms [EP/S023445/1]; EPSRC ViTac project (EP/T033517/1); King’s College London NMESFS PhD Studentship; the University of Liverpool and Vision4ce. It also made use of the facilities of the N8 Centre of Excellence in Computationally Intensive Research provided and funded by the N8 research partnership and EPSRC [EP/T022167/1].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos Panagiotis Alexandridis .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1792 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alexandridis, K.P., Deng, J., Nguyen, A., Luo, S. (2022). Long-Tailed Instance Segmentation Using Gumbel Optimized Loss. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13670. Springer, Cham. https://doi.org/10.1007/978-3-031-20080-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20080-9_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20079-3

  • Online ISBN: 978-3-031-20080-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics