Skip to main content

L3: Accelerator-Friendly Lossless Image Format for High-Resolution, High-Throughput DNN Training

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13671))

Included in the following conference series:

Abstract

The training process of deep neural networks (DNNs) is usually pipelined with stages for data preparation on CPUs followed by gradient computation on accelerators like GPUs. In an ideal pipeline, the end-to-end training throughput is eventually limited by the throughput of the accelerator, not by that of data preparation. In the past, the DNN training pipeline achieved a near-optimal throughput by utilizing datasets encoded with a lightweight, lossy image format like JPEG. However, as high-resolution, losslessly-encoded datasets become more popular for applications requiring high accuracy, a performance problem arises in the data preparation stage due to low-throughput image decoding on the CPU. Thus, we propose L3, a custom lightweight, lossless image format for high-resolution, high-throughput DNN training. The decoding process of L3 is effectively parallelized on the accelerator, thus minimizing CPU intervention for data preparation during DNN training. L3 achieves a 9.29\(\times \) higher data preparation throughput than PNG, the most popular lossless image format, for the Cityscapes dataset on NVIDIA A100 GPU, which leads to 1.71\(\times \) higher end-to-end training throughput. Compared to JPEG and WebP, two popular lossy image formats, L3 provides up to 1.77\(\times \) and 2.87\(\times \) higher end-to-end training throughput for ImageNet, respectively, at equivalent metric performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In: Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation, pp. 265–283. USENIX Association (2016)

    Google Scholar 

  2. Agustsson, E., Timofte, R.: NTIRE 2017 challenge on single image super-resolution: dataset and study. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (2017)

    Google Scholar 

  3. Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 833–851. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_49

    Chapter  Google Scholar 

  4. Chen, T., et al.: MXNet: a flexible and efficient machine learning library for heterogeneous distributed systems. arXiv preprint arXiv:1512.01274 (2015)

  5. Chen, T., et al.: TVM: an automated end-to-end optimizing compiler for deep learning. In: Proceedings of the 13th USENIX Symposium on Operating Systems Design and Implementation, pp. 578–594. USENIX Association (2018)

    Google Scholar 

  6. Chen, X., Ma, H., Wan, J., Li, B., Xia, T.: Multi-view 3D object detection network for autonomous driving. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  7. Cheng, B., Schwing, A., Kirillov, A.: Per-pixel classification is not all you need for semantic segmentation. In: Proceedings of the Advances in Neural Information Processing Systems, vol. 34, pp. 17864–17875. Curran Associates, Inc. (2021)

    Google Scholar 

  8. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  9. Dang-Nguyen, D.T., Pasquini, C., Conotter, V., Boato, G.: RAISE: a raw images dataset for digital image forensics. In: Proceedings of the 6th ACM Multimedia Systems Conference, pp. 219–224. Association for Computing Machinery (2015)

    Google Scholar 

  10. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-fei, L.: ImageNet: a large-scale hierarchical image database. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE (2009)

    Google Scholar 

  11. Farrens, M., Park, A.: Dynamic base register caching: a technique for reducing address bus width. In: Proceedings of the 18th Annual International Symposium on Computer Architecture, pp. 128–137. Association for Computing Machinery (1991)

    Google Scholar 

  12. Funasaka, S., Nakano, K., Ito, Y.: Adaptive loss-less data compression method optimized for GPU decompression. Concurrency Comput. Pract. Experience 29(24), e4283 (2017)

    Article  Google Scholar 

  13. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The KITTI vision benchmark suite. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2012)

    Google Scholar 

  14. Hong, Y., Pan, H., Sun, W., Jia, Y.: Deep dual-resolution networks for real-time and accurate semantic segmentation of road scenes. arXiv preprint arXiv:2101.06085 (2021)

  15. Hou, L., et al.: High resolution medical image analysis with spatial partitioning. arXiv preprint arXiv:1909.03108 (2019)

  16. Huang, Y., et al.: GPipe: efficient training of giant neural networks using pipeline parallelism. In: Proceedings of the Advances in Neural Information Processing Systems, vol. 32. Curran Associates, Inc. (2019)

    Google Scholar 

  17. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  18. Kirillov, A., Wu, Y., He, K., Girshick, R.: PointRend: image segmentation as rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  19. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images. Technical report. Citeseer (2009)

    Google Scholar 

  20. Lang, A.H., Vora, S., Caesar, H., Zhou, L., Yang, J., Beijbom, O.: PointPillars: fast encoders for object detection from point clouds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  21. Li, S., Yan, Z., Li, H., Cheng, K.T.: Exploring intermediate representation for monocular vehicle pose estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1873–1883 (2021)

    Google Scholar 

  22. Liang, J., Cao, J., Sun, G., Zhang, K., Van Gool, L., Timofte, R.: SwinIR: image restoration using swin transformer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, pp. 1833–1844 (2021)

    Google Scholar 

  23. Lim, B., Son, S., Kim, H., Nah, S., Mu Lee, K.: Enhanced deep residual networks for single image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 136–144 (2017)

    Google Scholar 

  24. Ma, L., et al.: Rammer: enabling holistic deep learning compiler optimizations with rTasks. In: Proceedings of the 14th USENIX Symposium on Operating Systems Design and Implementation, pp. 881–897. USENIX Association (2020)

    Google Scholar 

  25. Markthub, P., Belviranli, M.E., Lee, S., Vetter, J.S., Matsuoka, S.: DRAGON: breaking GPU memory capacity limits with direct NVM access. In: Proceedings of the International Conference for High Performance Computing, Networking, Storage, and Analysis, pp. 32:1–32:13. IEEE (2018)

    Google Scholar 

  26. Menze, M., Geiger, A.: Object scene flow for autonomous vehicles. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2015)

    Google Scholar 

  27. Mohan, J., Phanishayee, A., Raniwala, A., Chidambaram, V.: Analyzing and mitigating data stalls in DNN training. Proc. VLDB Endowment 14(5), 771–784 (2021)

    Article  Google Scholar 

  28. Murray, D.G., Simsa, J., Klimovic, A., Indyk, I.: tf.data: a machine learning data processing framework. Proceedings of the VLDB Endowment. 14(12), 2945–2958 (2021)

    Article  Google Scholar 

  29. Narayanan, D., et al.: PipeDream: generalized pipeline parallelism for DNN training. In: Proceedings of the 27th ACM Symposium on Operating Systems Principles, pp. 1–15. Association for Computing Machinery (2019)

    Google Scholar 

  30. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits in natural images with unsupervised feature learning. In: Proceedings of the NIPS Workshop on Deep Learning and Unsupervised Feature Learning (2011)

    Google Scholar 

  31. NVIDIA: NVIDIA A100 tensor core GPU architecture (2020). https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf

  32. NVIDIA: nvcomp: a library for fast lossless compression/decompression on the GPU (2021). https://github.com/NVIDIA/nvcomp

  33. NVIDIA: the NVIDIA data loading library (DALI) (2021). https://github.com/NVIDIA/DALI

  34. NVIDIA: nvJPEG libraries: GPU-accelerated JPEG decoder, encoder and transcoder (2021). https://developer.nvidia.com/nvjpeg

  35. NVIDIA: nvJPEG2000 libraries (2021). https://docs.nvidia.com/cuda/nvjpeg2000

  36. Ozsoy, A., Swany, M.: CULZSS: LZSS lossless data compression on CUDA. In: Proceedings of the 2011 IEEE International Conference on Cluster Computing, pp. 403–411 (2011)

    Google Scholar 

  37. Paeth, A.W.: II.9 - image file compression made easy. In: Graphics Gems II, pp. 93–100. Morgan Kaufmann (1991)

    Google Scholar 

  38. Park, P., Jeong, H., Kim, J.: TrainBox: an extreme-scale neural network training server architecture by systematically balancing operations. In: Proceedings of the 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture, pp. 825–838 (2020)

    Google Scholar 

  39. Patel, R.A., Zhang, Y., Mak, J., Davidson, A., Owens, J.D.: Parallel lossless data compression on the GPU. In: Proceedings of the 2012 Innovative Parallel Computing, pp. 1–9 (2012)

    Google Scholar 

  40. Pekhimenko, G., Seshadri, V., Mutlu, O., Gibbons, P.B., Kozuch, M.A., Mowry, T.C.: Base-delta-immediate compression: practical data compression for on-chip caches. In: Proceedings of the 21st International Conference on Parallel Architectures and Compilation Techniques, pp. 377–388. Association for Computing Machinery (2012)

    Google Scholar 

  41. Peng, Y., et al.: A generic communication scheduler for distributed DNN training acceleration. In: Proceedings of the 27th ACM Symposium on Operating Systems Principles, pp. 16–29. Association for Computing Machinery (2019)

    Google Scholar 

  42. Pillow: python pillow filters (2021). https://pillow.readthedocs.io/en/stable/handbook/concepts.html#filters

  43. PyTorch: pyTorch (2021). https://pytorch.org

  44. Rebsamen, M., Suter, Y., Wiest, R., Reyes, M., Rummel, C.: Brain morphometry estimation: from hours to seconds using deep learning. Front. Neurol. 11, 244 (2020)

    Article  Google Scholar 

  45. Ren, C., He, X., Wang, C., Zhao, Z.: Adaptive consistency prior based deep network for image denoising. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8596–8606 (2021)

    Google Scholar 

  46. Rhu, M., Gimelshein, N., Clemons, J., Zulfiqar, A., Keckler, S.W.: vDNN: virtualized deep neural networks for scalable, memory-efficient neural network design. In: Proceedings of the 49th Annual IEEE/ACM International Symposium on Microarchitecture, pp. 18:1–18:13. IEEE (2016)

    Google Scholar 

  47. Sarangi, S., Baas, B.: Canonical huffman decoder on fine-grain many-core processor arrays. In: Proceedings of the 2021 26th Asia and South Pacific Design Automation Conference, pp. 512–517 (2021)

    Google Scholar 

  48. Sitaridi, E., Mueller, R., Kaldewey, T., Lohman, G., Ross, K.A.: Massively-parallel lossless data decompression. In: Proceedings of the 2016 45th International Conference on Parallel Processing, pp. 242–247 (2016)

    Google Scholar 

  49. Ultralytics: Yolov5 (2021). https://github.com/ultralytics/yolov5/

  50. Wang, L., et al.: SuperNeurons: dynamic GPU memory management for training deep neural networks. In: Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, pp. 41–53. ACM (2018)

    Google Scholar 

  51. Wang, L., et al.: DIESEL: a dataset-based distributed storage and caching system for large-scale deep learning training. In: Proceedings of the 49th International Conference on Parallel Processing. Association for Computing Machinery (2020)

    Google Scholar 

  52. Wang, X., et al.: ESRGAN: enhanced super-resolution generative adversarial networks. In: Proceedings of the European Conference on Computer Vision Workshops (2018)

    Google Scholar 

  53. Wang, Z., Cun, X., Bao, J., Zhou, W., Liu, J., Li, H.: Uformer: a general u-shaped transformer for image restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 17683–17693 (2022)

    Google Scholar 

  54. Weißenberger, A., Schmidt, B.: Massively parallel huffman decoding on GPUs. In: Proceedings of the 47th International Conference on Parallel Processing. Association for Computing Machinery (2018)

    Google Scholar 

  55. Xu, L., Zhang, J., Cheng, X., Zhang, F., Wei, X., Ren, J.: Efficient deep image denoising via class specific convolution. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 4, pp. 3039–3046 (2021)

    Google Scholar 

  56. Yamamoto, N., Nakano, K., Ito, Y., Takafuji, D., Kasagi, A., Tabaru, T.: Huffman coding with gap arrays for GPU acceleration. In: Proceedings of the 49th International Conference on Parallel Processing. Association for Computing Machinery (2020)

    Google Scholar 

  57. Zhou, S., Nie, D., Adeli, E., Yin, J., Lian, J., Shen, D.: High-resolution encoder-decoder networks for low-contrast medical image segmentation. IEEE Trans. Image Process. 29, 461–475 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  58. Zhou, Y., Tuzel, O.: VoxelNet: end-to-end learning for point cloud based 3D object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

Download references

Acknowledgements

This work was supported by SNU-SK Hynix Solution Research Center (S3RC), and National Research Foundation of Korea (NRF) grant funded by Korea government (MSIT) (NRF-2020R1A2C3010663). The source code is available at https://github.com/SNU-ARC/L3.git.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae W. Lee .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 315 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bae, J., Baek, W., Ham, T.J., Lee, J.W. (2022). L3: Accelerator-Friendly Lossless Image Format for High-Resolution, High-Throughput DNN Training. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13671. Springer, Cham. https://doi.org/10.1007/978-3-031-20083-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20083-0_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20082-3

  • Online ISBN: 978-3-031-20083-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics