Skip to main content

IDa-Det: An Information Discrepancy-Aware Distillation for 1-Bit Detectors

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13671))

Included in the following conference series:

Abstract

Knowledge distillation (KD) has been proven to be useful for training compact object detection models. However, we observe that KD is often effective when the teacher model and student counterpart share similar proposal information. This explains why existing KD methods are less effective for 1-bit detectors, caused by a significant information discrepancy between the real-valued teacher and the 1-bit student. This paper presents an Information Discrepancy-aware strategy (IDa-Det) to distill 1-bit detectors that can effectively eliminate information discrepancies and significantly reduce the performance gap between a 1-bit detector and its real-valued counterpart. We formulate the distillation process as a bi-level optimization formulation. At the inner level, we select the representative proposals with maximum information discrepancy. We then introduce a novel entropy distillation loss to reduce the disparity based on the selected proposals. Extensive experiments demonstrate IDa-Det’s superiority over state-of-the-art 1-bit detectors and KD methods on both PASCAL VOC and COCO datasets. IDa-Det achieves a 76.9% mAP for a 1-bit Faster-RCNN with ResNet-18 backbone. Our code is open-sourced on https://github.com/SteveTsui/IDa-Det.

S. Xu, Y. Li and B. Zeng—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In this paper, the proposal denotes the neck/backbone feature map patched by the region proposal of detectors.

  2. 2.

    In this paper, we set \(\mathcal {T}=4\).

  3. 3.

    In this paper, Faster-RCNN denotes the Faster-RCNN implemented with FPN neck.

References

  1. Ba, J., Caruana, R.: Do deep nets really need to be deep? In: Proceedings of NeurIPS Workshop (2014)

    Google Scholar 

  2. Chen, G., Choi, W., Yu, X., Han, T., Chandraker, M.: Learning efficient object detection models with knowledge distillation. In: Proceedings of NeurIPS (2017)

    Google Scholar 

  3. Courbariaux, M., Bengio, Y., David, J.P.: Binaryconnect: training deep neural networks with binary weights during propagations. In: Proceedings of NeurIPS (2015)

    Google Scholar 

  4. Courbariaux, M., Hubara, I., Soudry, D., El-Yaniv, R., Bengio, Y.: Binarized neural networks: training deep neural networks with weights and activations constrained to+ 1 or-1. arXiv (2016)

    Google Scholar 

  5. Denil, M., Shakibi, B., Dinh, L., Ranzato, M., De Freitas, N.: Predicting parameters in deep learning. In: Proceedings of NeurIPS (2013)

    Google Scholar 

  6. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010). https://doi.org/10.1007/s11263-009-0275-4

    Article  Google Scholar 

  7. Feng, J.: Bolt. https://github.com/huawei-noah/bolt (2021)

  8. Gao, P., Ma, T., Li, H., Dai, J., Qiao, Y.: Convmae: masked convolution meets masked autoencoders. arXiv preprint arXiv:2205.03892 (2022)

  9. Gu, J., et al.: Convolutional neural networks for 1-bit CNNs via discrete back propagation. In: Proceedings of AAAI (2019)

    Google Scholar 

  10. Guo, J., et al.: Distilling object detectors via decoupled features. In: Proceedings of CVPR (2021)

    Google Scholar 

  11. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. In: Proceedings of ICCV (2015)

    Google Scholar 

  12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of CVPR (2016)

    Google Scholar 

  13. He, Y., Kang, G., Dong, X., Fu, Y., Yang, Y.: Soft filter pruning for accelerating deep convolutional neural networks. In: Proceedings of IJCAI (2018)

    Google Scholar 

  14. Hinton, G., Oriol, Dean, J.: Distilling the knowledge in a neural network. In: Proceedings of NeurIPS (2014)

    Google Scholar 

  15. Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications. In: Proceedings of CVPR (2017)

    Google Scholar 

  16. Li, H., Kadav, A., Durdanovic, I., Samet, H., Graf, H.P.: Pruning filters for efficient convnets. In: Proceedings of ICLR (2016)

    Google Scholar 

  17. Li, Q., Jin, S., Yan, J.: Mimicking very efficient network for object detection. In: Proceedings of CVPR (2017)

    Google Scholar 

  18. Li, R., Wang, Y., Liang, F., Qin, H., Yan, J., Fan, R.: Fully quantized network for object detection. In: Proceedings of CVPR (2019)

    Google Scholar 

  19. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of CVPR (2017)

    Google Scholar 

  20. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  21. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  22. Liu, Z., Luo, W., Wu, B., Yang, X., Liu, W., Cheng, K.T.: Bi-real net: binarizing deep network towards real-network performance. Int. J. Comput. Vision 128(1), 202–219 (2020)

    Article  Google Scholar 

  23. Liu, Z., Shen, Z., Savvides, M., Cheng, K.-T.: ReActNet: towards precise binary neural network with generalized activation functions. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12359, pp. 143–159. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58568-6_9

    Chapter  Google Scholar 

  24. Ma, N., Zhang, X., Zheng, H.T., Sun, J.: Shufflenet v2: practical guidelines for efficient CNN architecture design. In: Proceedings of ECCV (2018)

    Google Scholar 

  25. Paszke, A., et al.: Automatic differentiation in pytorch. In: NeurIPS Workshops (2017)

    Google Scholar 

  26. Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: XNOR-Net: ImageNet classification using binary convolutional neural networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 525–542. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_32

    Chapter  Google Scholar 

  27. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. (2016)

    Google Scholar 

  28. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: Proceedings of ICLR (2015)

    Google Scholar 

  29. Wang, G.H., Ge, Y., Wu, J.: Distilling knowledge by mimicking features. IEEE Trans. Pattern Anal. Mach. Intell. (2021)

    Google Scholar 

  30. Wang, T., Yuan, L., Zhang, X., Feng, J.: Distilling object detectors with fine-grained feature imitation. In: Proceedings of CVPR (2019)

    Google Scholar 

  31. Wang, Z., Wu, Z., Lu, J., Zhou, J.: BiDet: an efficient binarized object detector. In: Proceedings of CVPR (2020)

    Google Scholar 

  32. Wu, N.: The Maximum Entropy Method, vol. 32. Springer, Heidelberg (2012)

    Google Scholar 

  33. Xu, S., Li, Y., Zhao, J., Zhang, B., Guo, G.: Poem: 1-bit point-wise operations based on expectation-maximization for efficient point cloud processing. In: Proceedings of BMVC, pp. 1–10 (2021)

    Google Scholar 

  34. Xu, S., Liu, Z., Gong, X., Liu, C., Mao, M., Zhang, B.: Amplitude suppression and direction activation in networks for 1-bit faster R-CNN. In: Proceedings of EMDL (2020)

    Google Scholar 

  35. Xu, S., Zhao, J., Lu, J., Zhang, B., Han, S., Doermann, D.: Layer-wise searching for 1-bit detectors. In: Proceedings of CVPR (2021)

    Google Scholar 

  36. Zhao, J., Xu, S., Zhang, B., Gu, J., Doermann, D., Guo, G.: Towards compact 1-bit CNNs via Bayesian learning. Int. J. Comput. Vis. 130(2), 201–225 (2022)

    Article  Google Scholar 

  37. Zhou, S., Wu, Y., Ni, Z., Zhou, X., Wen, H., Zou, Y.: DoReFa-Net: training low bitwidth convolutional neural networks with low bitwidth gradients. arXiv (2016)

    Google Scholar 

  38. Zhuo, L., et al.: Cogradient descent for bilinear optimization. In: Proceedings of CVPR (2020)

    Google Scholar 

Download references

Acknowledgement

This work was supported in part by the National Natural Science Foundation of China under Grant 62076016, 92067204, 62141604 and the Shanghai Committee of Science and Technology under Grant No. 21DZ1100100.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baochang Zhang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 157 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, S. et al. (2022). IDa-Det: An Information Discrepancy-Aware Distillation for 1-Bit Detectors. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13671. Springer, Cham. https://doi.org/10.1007/978-3-031-20083-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20083-0_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20082-3

  • Online ISBN: 978-3-031-20083-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics