Abstract
Knowledge distillation (KD) has been proven to be useful for training compact object detection models. However, we observe that KD is often effective when the teacher model and student counterpart share similar proposal information. This explains why existing KD methods are less effective for 1-bit detectors, caused by a significant information discrepancy between the real-valued teacher and the 1-bit student. This paper presents an Information Discrepancy-aware strategy (IDa-Det) to distill 1-bit detectors that can effectively eliminate information discrepancies and significantly reduce the performance gap between a 1-bit detector and its real-valued counterpart. We formulate the distillation process as a bi-level optimization formulation. At the inner level, we select the representative proposals with maximum information discrepancy. We then introduce a novel entropy distillation loss to reduce the disparity based on the selected proposals. Extensive experiments demonstrate IDa-Det’s superiority over state-of-the-art 1-bit detectors and KD methods on both PASCAL VOC and COCO datasets. IDa-Det achieves a 76.9% mAP for a 1-bit Faster-RCNN with ResNet-18 backbone. Our code is open-sourced on https://github.com/SteveTsui/IDa-Det.
S. Xu, Y. Li and B. Zeng—Equal contribution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
In this paper, the proposal denotes the neck/backbone feature map patched by the region proposal of detectors.
- 2.
In this paper, we set \(\mathcal {T}=4\).
- 3.
In this paper, Faster-RCNN denotes the Faster-RCNN implemented with FPN neck.
References
Ba, J., Caruana, R.: Do deep nets really need to be deep? In: Proceedings of NeurIPS Workshop (2014)
Chen, G., Choi, W., Yu, X., Han, T., Chandraker, M.: Learning efficient object detection models with knowledge distillation. In: Proceedings of NeurIPS (2017)
Courbariaux, M., Bengio, Y., David, J.P.: Binaryconnect: training deep neural networks with binary weights during propagations. In: Proceedings of NeurIPS (2015)
Courbariaux, M., Hubara, I., Soudry, D., El-Yaniv, R., Bengio, Y.: Binarized neural networks: training deep neural networks with weights and activations constrained to+ 1 or-1. arXiv (2016)
Denil, M., Shakibi, B., Dinh, L., Ranzato, M., De Freitas, N.: Predicting parameters in deep learning. In: Proceedings of NeurIPS (2013)
Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010). https://doi.org/10.1007/s11263-009-0275-4
Feng, J.: Bolt. https://github.com/huawei-noah/bolt (2021)
Gao, P., Ma, T., Li, H., Dai, J., Qiao, Y.: Convmae: masked convolution meets masked autoencoders. arXiv preprint arXiv:2205.03892 (2022)
Gu, J., et al.: Convolutional neural networks for 1-bit CNNs via discrete back propagation. In: Proceedings of AAAI (2019)
Guo, J., et al.: Distilling object detectors via decoupled features. In: Proceedings of CVPR (2021)
He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. In: Proceedings of ICCV (2015)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of CVPR (2016)
He, Y., Kang, G., Dong, X., Fu, Y., Yang, Y.: Soft filter pruning for accelerating deep convolutional neural networks. In: Proceedings of IJCAI (2018)
Hinton, G., Oriol, Dean, J.: Distilling the knowledge in a neural network. In: Proceedings of NeurIPS (2014)
Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications. In: Proceedings of CVPR (2017)
Li, H., Kadav, A., Durdanovic, I., Samet, H., Graf, H.P.: Pruning filters for efficient convnets. In: Proceedings of ICLR (2016)
Li, Q., Jin, S., Yan, J.: Mimicking very efficient network for object detection. In: Proceedings of CVPR (2017)
Li, R., Wang, Y., Liang, F., Qin, H., Yan, J., Fan, R.: Fully quantized network for object detection. In: Proceedings of CVPR (2019)
Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of CVPR (2017)
Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2
Liu, Z., Luo, W., Wu, B., Yang, X., Liu, W., Cheng, K.T.: Bi-real net: binarizing deep network towards real-network performance. Int. J. Comput. Vision 128(1), 202–219 (2020)
Liu, Z., Shen, Z., Savvides, M., Cheng, K.-T.: ReActNet: towards precise binary neural network with generalized activation functions. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12359, pp. 143–159. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58568-6_9
Ma, N., Zhang, X., Zheng, H.T., Sun, J.: Shufflenet v2: practical guidelines for efficient CNN architecture design. In: Proceedings of ECCV (2018)
Paszke, A., et al.: Automatic differentiation in pytorch. In: NeurIPS Workshops (2017)
Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: XNOR-Net: ImageNet classification using binary convolutional neural networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 525–542. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_32
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. (2016)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: Proceedings of ICLR (2015)
Wang, G.H., Ge, Y., Wu, J.: Distilling knowledge by mimicking features. IEEE Trans. Pattern Anal. Mach. Intell. (2021)
Wang, T., Yuan, L., Zhang, X., Feng, J.: Distilling object detectors with fine-grained feature imitation. In: Proceedings of CVPR (2019)
Wang, Z., Wu, Z., Lu, J., Zhou, J.: BiDet: an efficient binarized object detector. In: Proceedings of CVPR (2020)
Wu, N.: The Maximum Entropy Method, vol. 32. Springer, Heidelberg (2012)
Xu, S., Li, Y., Zhao, J., Zhang, B., Guo, G.: Poem: 1-bit point-wise operations based on expectation-maximization for efficient point cloud processing. In: Proceedings of BMVC, pp. 1–10 (2021)
Xu, S., Liu, Z., Gong, X., Liu, C., Mao, M., Zhang, B.: Amplitude suppression and direction activation in networks for 1-bit faster R-CNN. In: Proceedings of EMDL (2020)
Xu, S., Zhao, J., Lu, J., Zhang, B., Han, S., Doermann, D.: Layer-wise searching for 1-bit detectors. In: Proceedings of CVPR (2021)
Zhao, J., Xu, S., Zhang, B., Gu, J., Doermann, D., Guo, G.: Towards compact 1-bit CNNs via Bayesian learning. Int. J. Comput. Vis. 130(2), 201–225 (2022)
Zhou, S., Wu, Y., Ni, Z., Zhou, X., Wen, H., Zou, Y.: DoReFa-Net: training low bitwidth convolutional neural networks with low bitwidth gradients. arXiv (2016)
Zhuo, L., et al.: Cogradient descent for bilinear optimization. In: Proceedings of CVPR (2020)
Acknowledgement
This work was supported in part by the National Natural Science Foundation of China under Grant 62076016, 92067204, 62141604 and the Shanghai Committee of Science and Technology under Grant No. 21DZ1100100.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Xu, S. et al. (2022). IDa-Det: An Information Discrepancy-Aware Distillation for 1-Bit Detectors. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13671. Springer, Cham. https://doi.org/10.1007/978-3-031-20083-0_21
Download citation
DOI: https://doi.org/10.1007/978-3-031-20083-0_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20082-3
Online ISBN: 978-3-031-20083-0
eBook Packages: Computer ScienceComputer Science (R0)