Skip to main content

Multi-granularity Pruning for Model Acceleration on Mobile Devices

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13671))

Included in the following conference series:

Abstract

For practical deep neural network design on mobile devices, it is essential to consider the constraints incurred by the computational resources and the inference latency in various applications. Among deep network acceleration approaches, pruning is a widely adopted practice to balance the computational resource consumption and the accuracy, where unimportant connections can be removed either channel-wisely or randomly with a minimal impact on model accuracy. The coarse-grained channel pruning instantly results in a significant latency reduction, while the fine-grained weight pruning is more flexible to retain accuracy. In this paper, we present a unified framework for the Joint Channel pruning and Weight pruning, named JCW, which achieves a better pruning proportion between channel and weight pruning. To fully optimize the trade-off between latency and accuracy, we further develop a tailored multi-objective evolutionary algorithm in the JCW framework, which enables one single round search to obtain the accurate candidate architectures for various deployment requirements. Extensive experiments demonstrate that the JCW achieves a better trade-off between the latency and accuracy against previous state-of-the-art pruning methods on the ImageNet classification dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We use weight sparsity to denote the ratio of non-zero parameters of remaining channels across the whole paper.

  2. 2.

    In MOO, the Pareto-frontier is a set of solutions that for each solution, it is not possible to further improve some objectives without degrading other objectives.

  3. 3.

    Please refer to the Appendix for more results about this observation.

  4. 4.

    More detailed derivation is given in Appendix.

References

  1. Towards compact cnns via collaborative compression. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

    Google Scholar 

  2. Berman, M., Pishchulin, L., Xu, N., B.Blaschko, M., Medioni, G.: Aows: adaptive and optimal network width search with latency constraints. In: 2020 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  3. Cai, H., Gan, C., Wang, T., Zhang, Z., Han, S.: Once for all: train one network and specialize it for efficient deployment. In: International Conference on Learning Representations (2020)

    Google Scholar 

  4. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002). https://doi.org/10.1109/4235.996017

    Article  Google Scholar 

  5. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  6. Ding, X., Ding, G., Zhou, X., Guo, Y., Liu, J., Han, J.: Approximated oracle filter pruning for destructive cnn width optimization. In: IEEE Conference on Machine Learning (ICML) (2019)

    Google Scholar 

  7. Ding, X., Ding, G., Zhou, X., Guo, Y., Liu, J., Han, J.: Global sparse momentum sgd for pruning very deep neural networks. In: Advances in Neural Information Processing Systems, (NeurIPS) (2019)

    Google Scholar 

  8. Dong, J.D., Cheng, A.C., Juan, D.C., Wei, W., Sun, M.: Dpp-net: device-aware progressive search for pareto-optimal neural architectures. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 517–531 (2018)

    Google Scholar 

  9. Dong, X., Yang, Y.: Network pruning via transformable architecture search. In: Advances in Neural Information Processing Systems, pp. 760–771 (2019)

    Google Scholar 

  10. Elsen, E., Dukhan, M., Gale, T., Simonyan, K.: Fast sparse convnets. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  11. Elsken, T., Metzen, J.H., Hutter, F.: Efficient multi-objective neural architecture search via lamarckian evolution. In: International Conference on Learning Representations (ICLR) (2019)

    Google Scholar 

  12. Frankle, J., Carbin, M.: The lottery ticket hypothesis: finding sparse, trainable neural networks. In: International Conference on Learning Representations (ICLR) (2019)

    Google Scholar 

  13. Gao, S., Huang, F., Cai, W., Huang, H.: Network pruning via performance maximization. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2021)

    Google Scholar 

  14. Google-Inc.: machine learning for mobile devices: Tenworflow lite (2020). https://www.tensorflow.org/lite

  15. Guo, S., Wang, Y., Li, Q., Yan, J.: Dmcp: differentiable markov channel pruning for neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1539–1547 (2020)

    Google Scholar 

  16. Guo, Z., et al.: Single path one-shot neural architecture search with uniform sampling. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12361, pp. 544–560. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58517-4_32

    Chapter  Google Scholar 

  17. Han, S., Mao, H., Dally, W.J.: Deep compression: compressing deep neural network with pruning, trained quantization and huffman coding. In: International Conference on Learning Representations (ICLR) (2016)

    Google Scholar 

  18. Han, S., Pool, J., Tran, J., Dally, W.J.: Learning both weights and connections for efficient neural networks. In: Advances in Neural Information Processing Systems (NIPS) (2015)

    Google Scholar 

  19. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015)

    Google Scholar 

  20. He, Y., Zhang, X., Sun, J.: Channel pruning for accelerating very deep neural networks. In: 2017 IEEE International Conference on Computer Vision (ICCV) (2017)

    Google Scholar 

  21. He, Y., Kang, G., Dong, X., Fu, Y., Yang, Y.: Soft filter pruning for accelerating deep convolutional neural networks. In: Proceedings of International Joint Conference on Artificial Intelligence (IJCAI) (2018)

    Google Scholar 

  22. He, Y., Liu, P., Wang, Z., Hu, Z., Yang, Y.: Filter pruning via geometric median for deep convolutional neural networks acceleration. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  23. He, Y., Lin, J., Liu, Z., Wang, H., Li, L.J., Han, S.: Amc: automl for model compression and acceleration on mobile devices. In: Proceedings of the European Conference on Computer Vision (ECCV) (2018)

    Google Scholar 

  24. Howard, A.G., et al.: Mobilenets: efficient convolutional neural networks for mobile vision applications. CoRR abs/1704.04861 (2017). https://arxiv.org/abs/1704.04861

  25. Hsu, C.H., et al: Monas: multi-objective neural architecture search using reinforcement learning. arXiv preprint arXiv:1806.10332 (2018)

  26. Hu, H., Peng, R., Tai, Y.W., Tang, C.K.: Network trimming: a data-driven neuron pruning approach towards efficient deep architectures. arXiv:1607.03250 (2016)

  27. Joo, D., Yi, E., Baek, S., Kim, J.: Linearly replaceable filters for deep network channel pruning. In: The 34th AAAI Conference on Artificial Intelligence (AAAI) (2021)

    Google Scholar 

  28. LeCun, Y., Denker, J.S., Solla, S.A.: Optimal brain damage. In: Advances in Neural Information Processing Systems, pp. 598–605 (1990)

    Google Scholar 

  29. Li, C., Wang, G., Wang, B., Liang, X., Li, Z., Chang, X.: Dynamic slimmable network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8607–8617 (2021)

    Google Scholar 

  30. Li, F., Li, G., He, X., Cheng, J.: Dynamic dual gating neural networks. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 5330–5339 (2021)

    Google Scholar 

  31. Li, H., Kadav, A., Durdanovic, I.: Pruning filters for efficient convnets. In: International Conference on Learning Representation (ICLR) (2017)

    Google Scholar 

  32. Li, H., Kadav, A., Durdanovic, I., Samet, H., Graf, H.P.: Pruning filters for efficient convnets. arXiv preprint arXiv:1608.08710 (2016)

  33. Lin, M., Ji, R., Zhang, Y., Zhang, B., Wu, Y., Tian, Y.: Channel pruning via automatic structure search. In: Proceedings of International Joint Conference on Artificial Intelligence (IJCAI) (2020)

    Google Scholar 

  34. Liu, L., et al.: Group fisher pruning for practical network compression. In: International Conference on Machine Learning (ICML) (2021)

    Google Scholar 

  35. Liu, Z., et al.: Metapruning: meta learning for automatic neural network channel pruning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3296–3305 (2019)

    Google Scholar 

  36. Lu, Z., et al.: Nsga-net: neural architecture search using multi-objective genetic algorithm. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 419–427 (2019)

    Google Scholar 

  37. Luo, J., Zhang, H., Zhou, H., Xie, C., Wu, J., Lin, W.: Thinet: pruning cnn filters for a thinner net. IEEE Trans. Pattern Anal. Mach. Intell. TPAMI (2018)

    Google Scholar 

  38. Molchanov, D., Ashukha, A., Vetrov, D.: Variational dropout sparsifies deep neural networks. In: Proceedings of the International Conference on Machine Learning (2017)

    Google Scholar 

  39. Molchanov, P., Tyree, S., Karras, T., Aila, T., Kautz, J.: Pruning convolutional neural networks for resource efficient inference. In: International Conference on Learning Representations (ICLR) (2017)

    Google Scholar 

  40. Molchanov, P., Mallya, A., Tyree, S., Frosio, I., Kautz, J.: Importance estimation for neural network pruning. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  41. Peng, H., Wu, J., Chen, S., Huang, J.: Collaborative channel pruning for deep neural networks. In: International Conference on Machine Learning (ICML) (2019)

    Google Scholar 

  42. Pham, H., Guan, M.Y., Zoph, B., Le, Q.V., Dean, J.: Efficient neural architecture search via parameter sharing. In: International Conference on Machine Learning (2018)

    Google Scholar 

  43. Ruan, X., Liu, Y., Li, B., Yuan, C., Hu, W.: Dpfps: dynamic and progressive filter pruning for compressing convolutional neural networks from scratch. In: The 34th AAAI Conference on Artificial Intelligence (AAAI) (2021)

    Google Scholar 

  44. Sandler, M., Howard, A.G., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv 2: inverted residuals and linear bottlenecks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  45. Su, X., You, S., Wang, F., Qian, C., Zhang, C., Xu, C.: Bcnet: searching for network width with bilaterally coupled network. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2021)

    Google Scholar 

  46. Tan, M., et al.: Mnasnet: platform-aware neural architecture search for mobile. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2820–2828 (2019)

    Google Scholar 

  47. Tang, Y., et al.: Manifold regularized dynamic network pruning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5018–5028 (2021)

    Google Scholar 

  48. Wang, J., et al.: Revisiting parameter sharing for automatic neural channel number search. In: Advances in Neural Information Processing Systems 33 (2020)

    Google Scholar 

  49. Wang, K., Liu, Z., Lin, Y., Lin, J., Han, S.: Haq: Hardware-aware automated quantization with mixed precision. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  50. Wang, T., et al.: Apq: joint search for network architecture, pruning and quantization policy. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2078–2087 (2020)

    Google Scholar 

  51. Wang, W., et al.: Accelerate cnns from three dimensions: a comprehensive pruning framework. In: International Conference on Machine Learning (ICML) (2021)

    Google Scholar 

  52. Wang, Z., Li, C., Wang, X.: Convolutional neural network pruning with structural redundancy reduction. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2021)

    Google Scholar 

  53. Wen, W., Wu, C., Wang, Y., Chen, Y., Li, H.: Learning structured sparsity in deep neural networks. In: Advances in Neural Information Processing Systems (NeurIPS) (2016)

    Google Scholar 

  54. Yang, H., Zhu, Y., Liu, J.: Ecc: Platform-independent energy-constrained deep neural network compression via a bilinear regression model. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  55. Yang, T., et al.: Netadapt: Platform-aware neural network adaption for mobile applications. In: European Conference on Computer Vision (ECCV) (2018)

    Google Scholar 

  56. Yang, Z., et al.: Cars: continuous evolution for efficient neural architecture search. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  57. Yu, J., Huang, T.S.: Autoslim: towards one-shot architecture search for channel numbers. CoRR abs/1903.11728 (2019). https://arxiv.org/abs/1903.11728

  58. Yu, J., Huang, T.S.: Universally slimmable networks and improved training techniques. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1803–1811 (2019)

    Google Scholar 

  59. Yu, J., et al.: BigNAS: scaling up neural architecture search with big single-stage models. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12352, pp. 702–717. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58571-6_41

    Chapter  Google Scholar 

  60. Zhuang, Z., et al.: Discrimination-aware channel pruning for deep neural networks. In: Advances in Neural Information Processing Systems (NeurIPS) (2018)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Key Research and Development Program of China under Grant 2021ZD0201504, in part by the Strategic Priority Research Program of Chinese Academy of Sciences under Grant XDA27040300.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Cheng .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 567 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, T. et al. (2022). Multi-granularity Pruning for Model Acceleration on Mobile Devices. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13671. Springer, Cham. https://doi.org/10.1007/978-3-031-20083-0_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20083-0_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20082-3

  • Online ISBN: 978-3-031-20083-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics