Skip to main content

CIFD: A Distance for Complex Intuitionistic Fuzzy Set

  • Conference paper
  • First Online:
Machine Learning for Cyber Security (ML4CS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13655))

Included in the following conference series:

Abstract

Intuitionistic fuzzy set (IFS) has attracted much attention because it can deal with fuzziness and uncertainty more flexibly than traditional fuzzy set. Complex intuitionistic fuzzy set (CIFS) extends intuitionistic fuzzy to the complex plane, which can better express and process uncertain information. In this paper, a novel distance measure complex intuitionistic fuzzy distance (CIFD) is proposed for CIFSs. Firstly, inspired by Tanimoto coefficient, a new similarity measure between CIFSs is proposed. Then, based on the similarity measure, the CIFD is proposed and its non-negativity, non-degeneracy, and symmetry are analyzed. Moreover, when CIFS degenerates into classical IFS, CIFD is also applicable to measure the differences between IFSs. Finally, to illustrate the effectiveness of CIFD, an example is given at the end.

This research is supported by the National Natural Science Foundation of China (No. 62003280), Chongqing Talents: Exceptional Young Talents Project (No. cstc2022ycjh-bgzxm0070), Natural Science Foundation of Chongqing, China (No. CSTB2022NSCQ-MSX0531), and Chongqing Overseas Scholars Innovation Program (No. cx2022024).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Meng, D., Li, Y., He, C., Guo, J., Lv, Z., Wu, P.: Multidisciplinary design for structural integrity using a collaborative optimization method based on adaptive surrogate modelling. Mater. Des. 206, 109789 (2021)

    Article  Google Scholar 

  2. Deng, Y.: Information volume of mass function. Int. J. Comput. Commun. Control 15(6), 3983 (2020)

    Article  Google Scholar 

  3. Zhenjie, Z., Xiaobin, X., Peng, C., Xudong, W., Xiaojian, X., Guodong, W.: A novel nonlinear causal inference approach using vector-based belief rule base. Int. J. Intell. Syst. (2021). https://doi.org/10.1002/int.22500

    Article  Google Scholar 

  4. Deng, Y.: Uncertainty measure in evidence theory. Sci. China Inf. Sci. 63(11), 1–19 (2020). https://doi.org/10.1007/s11432-020-3006-9

    Article  MathSciNet  Google Scholar 

  5. Song, M., Sun, C., Cai, D., Hong, S., Li, H.: Classifying vaguely labeled data based on evidential fusion. Inf. Sci. 583, 159–173 (2022)

    Article  Google Scholar 

  6. Li, D., Deng, Y., Cheong, K.H.: Multisource basic probability assignment fusion based on information quality. Int. J. Intell. Syst. 36(4), 1851–1875 (2021)

    Article  Google Scholar 

  7. Zhou, M., Liu, X.-B., Chen, Y.-W., Qian, X.-F., Yang, J.-B., Wu, J.: Assignment of attribute weights with belief distributions for MADM under uncertainties. Knowl.-Based Syst. 189, 105110 (2020)

    Article  Google Scholar 

  8. Fu, C., Xue, M., Chang, W., Xu, D., Yang, S.: An evidential reasoning approach based on risk attitude and criterion reliability. Knowl.-Based Syst. 199, 105947 (2020)

    Article  Google Scholar 

  9. Liu, Z.G., Huang, L.Q., Zhou, K., Denoeux, T.: Combination of transferable classification with multisource domain adaptation based on evidential reasoning. IEEE Trans. Neural Netw. Learn. Syst. 32, 2015–2029 (2020)

    Article  MathSciNet  Google Scholar 

  10. Babajanyan, S., Allahverdyan, A., Cheong, K.H.: Energy and entropy: Path from game theory to statistical mechanics. Phys. Rev. Res. 2(4), 043055 (2020)

    Article  Google Scholar 

  11. Pan, L., Gao, X., Deng, Y., Cheong, K.H.: The constrained Pythagorean fuzzy sets and its similarity measure. IEEE Trans. Fuzzy Syst. 30, 1102–1113 (2021)

    Article  Google Scholar 

  12. Wang, Z., Li, Z., Wang, R., Nie, F., Li, X.: Large graph clustering with simultaneous spectral embedding and discretization. IEEE Trans. Pattern Anal. Mach. Intell. 43(12), 4426–4440 (2021). https://doi.org/10.1109/TPAMI.2020.3002587

    Article  Google Scholar 

  13. Xu, X., Zheng, J., Yang, J.-B., Xu, D.-L., Chen, Y.-W.: Data classification using evidence reasoning rule. Knowl.-Based Syst. 116, 144–151 (2017)

    Article  Google Scholar 

  14. Xiao, F., Wen, J., Pedrycz, W.: Generalized divergence-based decision making method with an application to pattern classification. IEEE Trans. Knowl. Data Eng. (2022). https://doi.org/10.1109/TKDE.2022.3177896

    Article  Google Scholar 

  15. Zhang, L., Xiao, F.: A novel belief \(\chi \)2 divergence for multisource information fusion and its application in pattern classification. Int. J. Intell. Syst. 37, 7968–7991 (2022). https://doi.org/10.1002/int.22912

    Article  Google Scholar 

  16. Zhao, J., Deng, Y.: Complex network modeling of evidence theory. IEEE Trans. Fuzzy Syst. 29, 3470–3480 (2020)

    Article  Google Scholar 

  17. Xiong, L., Su, X., Qian, H.: Conflicting evidence combination from the perspective of networks. Inf. Sci. 580, 408–418 (2021). https://doi.org/10.1016/j.ins.2021.08.088

    Article  MathSciNet  Google Scholar 

  18. Jiang, W., Cao, Y., Deng, X.: A novel Z-network model based on Bayesian network and Z-number. IEEE Trans. Fuzzy Syst. 28(8), 1585–1599 (2020)

    Article  Google Scholar 

  19. Meng, D., Xie, T., Wu, P., He, C., Hu, Z., Lv, Z.: An uncertainty-based design optimization strategy with random and interval variables for multidisciplinary engineering systems. In: Structures, vol. 32, pp. 997–1004. Elsevier (2021)

    Google Scholar 

  20. Cheong, K.H., Koh, J.M., Jones, M.C.: Paradoxical survival: examining the parrondo effect across biology. BioEssays 41(6), 1900027 (2019)

    Article  Google Scholar 

  21. Lai, J.W., Cheong, K.H.: Parrondo effect in quantum coin-toss simulations. Phys. Rev. E 101, 052212 (2020)

    Article  MathSciNet  Google Scholar 

  22. Liu, P., Zhang, X., Pedrycz, W.: A consensus model for hesitant fuzzy linguistic group decision-making in the framework of Dempster-Shafer evidence theory. Knowl.-Based Syst. 212, 106559 (2021)

    Article  Google Scholar 

  23. Wu, Z., Liao, H.: A consensus reaching process for large-scale group decision making with heterogeneous preference information. Int. J. Intell. Syst. 36, 4560–4591 (2021). https://doi.org/10.1002/int.22469

    Article  Google Scholar 

  24. Deng, J., Deng, Y.: Information volume of fuzzy membership function. Int. J. Comput. Commun. Control 16(1), 1–14 (2021). https://doi.org/10.15837/ijccc.2021.1.4106

    Article  Google Scholar 

  25. Deng, Y.: Random permutation set. Int. J. Comput. Commun. Control 17(1), 1–16 (2022). https://doi.org/10.15837/ijccc.2022.1.4542

    Article  Google Scholar 

  26. Garg, H.: A new possibility degree measure for interval-valued q-rung orthopair fuzzy sets in decision-making. Int. J. Intell. Syst. 36(1), 526–557 (2021)

    Article  Google Scholar 

  27. Fei, L., Feng, Y.: Intuitionistic fuzzy decision-making in the framework of Dempster-Shafer structures. Int. J. Intell. Syst. 36(10), 5419–5448 (2021)

    Article  Google Scholar 

  28. Wang, Z., Xiao, F., Ding, W.: Interval-valued intuitionistic fuzzy jenson-shannon divergence and its application in multi-attribute decision making. Appl. Intel. 52, 1–17 (2022). https://doi.org/10.1007/s10489-022-03347-0

    Article  Google Scholar 

  29. Song, Y., Fu, Q., Wang, Y.-F., Wang, X.: Divergence-based cross entropy and uncertainty measures of Atanassov’s intuitionistic fuzzy sets with their application in decision making. Appl. Soft Comput. 84, 105703 (2019)

    Article  Google Scholar 

  30. Zhao, Y., Xiao, F.: A novel complex intuitionistic fuzzy set. https://vixra.org/abs/2205.0122

  31. Li, Y., Zhu, R., Mi, X., Kang, B.: An intelligent quality-based fusion method for complex-valued distributions using POWA operator. Eng. Appl. Artif. Intell. 109, 104618 (2022)

    Article  Google Scholar 

  32. Xiao, F.: Generalized belief function in complex evidence theory. J. Intell. Fuzzy Syst. 38(4), 3665–3673 (2020)

    Article  Google Scholar 

  33. Deng, X., Jiang, W.: Quantum representation of basic probability assignments based on mixed quantum states. In: 2021 IEEE 24th International Conference on Information Fusion (FUSION), pp. 1–6. IEEE (2021)

    Google Scholar 

  34. Ding, W., Lin, C.-T., Cao, Z.: Deep neuro-cognitive co-evolution for fuzzy attribute reduction by quantum leaping PSO with nearest-neighbor memeplexes. IEEE Trans. Cybern. 49(7), 2744–2757 (2018)

    Article  Google Scholar 

  35. Xiao, F., Pedrycz, W.: Negation of the quantum mass function for multisource quantum information fusion with its application to pattern classification. IEEE Trans. Pattern Anal. Mach. Intel. (2022)

    Google Scholar 

  36. Szmidt, E., Kacprzyk, J.: Distances between intuitionistic fuzzy sets. Fuzzy Sets Syst. 114(3), 505–518 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  37. Rogers, D.J., Tanimoto, T.T.: A computer program for classifying plants. Science 132(3434), 1115–1118 (1960)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuyuan Xiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, Y., Xiao, F. (2023). CIFD: A Distance for Complex Intuitionistic Fuzzy Set. In: Xu, Y., Yan, H., Teng, H., Cai, J., Li, J. (eds) Machine Learning for Cyber Security. ML4CS 2022. Lecture Notes in Computer Science, vol 13655. Springer, Cham. https://doi.org/10.1007/978-3-031-20096-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20096-0_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20095-3

  • Online ISBN: 978-3-031-20096-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics