Skip to main content

Deep Adaptively Feature Extracting Network for Cervical Squamous Lesion Cell Detection

  • Conference paper
  • First Online:
Machine Learning for Cyber Security (ML4CS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13656))

Included in the following conference series:

  • 856 Accesses

Abstract

Cervical cancer is one of the most widespread malignancies affecting women’s health worldwide today. However, the task of detection is particularly difficult due to the complex background of the cervical smear, where cells are previously stacked in clusters. To address this problem, we utilize the YOLOv5 as the baseline and build on YOLOv5 by using the simple Transformer Block which only combines with multi-head self attention layers and MLP to better extract cell features as well as to obtain global information. In addition, we allow the model to refine features adaptively to assist with detection by using Convolutional Block Attention Module (CBAM), an attention module being simple and effective for feed-forward convolutional neural networks, in the complex background information. Finally, we compare the model with YOLOv5 as baseline. In CDetector dataset, our model obtains 52.5% mAP@.5, which is 6% better than baseline. In transfer learning, it is 62.2%, which outperforms baseline by 3.2%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bhatt, A.R., Ganatra, A., Kotecha, K.: Cervical cancer detection in pap smear whole slide images using convnet with transfer learning and progressive resizing. PeerJ Comput. Sci. 7, e348 (2021)

    Article  Google Scholar 

  2. Cao, M., Chen, W.: Interpretation on the global cancer statistics of globocan 2020. Zhongguo Yi Xue Qian Yan Za Zhi (Dian Zi Ban) 13(3), 63–69 (2021)

    Google Scholar 

  3. Chankong, T., Theera-Umpon, N., Auephanwiriyakul, S.: Automatic cervical cell segmentation and classification in pap smears. Comput. Methods Program. Biomed. 113(2), 539–556 (2014)

    Article  Google Scholar 

  4. Chen, H., Dou, Q., Wang, X., Qin, J., Heng, P.A.: Mitosis detection in breast cancer histology images via deep cascaded networks. In: Thirtieth AAAI Conference on Artificial Intelligence (2016)

    Google Scholar 

  5. Dimauro, G.: Nasal cytology with deep learning techniques. Int. J. Med. Inform. 122, 13–19 (2019)

    Article  Google Scholar 

  6. Dosovitskiy, A., et al.: An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  7. Girshick, R.: Fast r-cnn. In: Proceedings of the IEEE international conference on computer vision, pp. 1440–1448 (2015)

    Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  9. Health, W.H.O.R., Organization, W.H., Diseases, W.H.O.C., Promotion, H.: Comprehensive cervical cancer control: a guide to essential practice. World Health Organization (2006)

    Google Scholar 

  10. Jantzen, J., Norup, J., Dounias, G., Bjerregaard, B.: Pap-smear benchmark data for pattern classification. Nature inspired Smart Information Systems (NiSIS 2005), pp. 1–9 (2005)

    Google Scholar 

  11. Jusman, Y., Isa, N.A.M., Ng, S.C., Kanafiah, S.N.A.M., Osman, N.A.A.: Quadratic of half ellipse smoothing technique for cervical cells ftir spectra in a screening system. Proc. Comput. Sci. 59, 133–141 (2015)

    Article  Google Scholar 

  12. Li, X., Li, Q., et al.: Detection and classification of cervical exfoliated cells based on faster r-cnn. In: 2019 IEEE 11th International Conference on Advanced Infocomm Technology (ICAIT), pp. 52–57. IEEE (2019)

    Google Scholar 

  13. Liang, Y., Pan, C., Sun, W., Liu, Q., Du, Y.: Global context-aware cervical cell detection with soft scale anchor matching. Comput. Methods Program. Biomed. 204, 106061 (2021)

    Article  Google Scholar 

  14. Liang, Y., Tang, Z., Yan, M., Chen, J., Liu, Q., Xiang, Y.: Comparison detector for cervical cell/clumps detection in the limited data scenario. Neurocomputing 437, 195–205 (2021)

    Article  Google Scholar 

  15. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  16. Liu, L., Wang, Y., Ma, Q., Tan, L., Wu, Y., Xiao, J.: Artificial classification of cervical squamous lesions in thinprep cytologic tests using a deep convolutional neural network. Oncol. Lett. 20(4), 1–1 (2020)

    Google Scholar 

  17. Prewitt, J.M., Mendelsohn, M.L.: The analysis of cell images. Annals New York Acad. Sci. 128(3), 1035–1053 (1966)

    Article  Google Scholar 

  18. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 779–788 (2016)

    Google Scholar 

  19. Redmon, J., Farhadi, A.: Yolov3: An incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

  20. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, vol. 28 (2015)

    Google Scholar 

  21. Shanthi, P., Faruqi, F., Hareesha, K., Kudva, R.: Deep convolution neural network for malignancy detection and classification in microscopic uterine cervix cell images. Asian Pacific J. Cancer Prevention: APJCP 20(11), 3447 (2019)

    Article  Google Scholar 

  22. Shi, X., Su, H., Xing, F., Liang, Y., Qu, G., Yang, L.: Graph temporal ensembling based semi-supervised convolutional neural network with noisy labels for histopathology image analysis. Medical Image Anal. 60, 101624 (2020)

    Article  Google Scholar 

  23. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  24. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1–9 (2015)

    Google Scholar 

  25. Tan, M., Pang, R., Le, Q.V.: Efficientdet: Scalable and efficient object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10781–10790 (2020)

    Google Scholar 

  26. Teramoto, A., Tsukamoto, T., Kiriyama, Y., Fujita, H.: Automated classification of lung cancer types from cytological images using deep convolutional neural networks. In: BioMed Research International 2017 (2017)

    Google Scholar 

  27. Teramoto, A., et al.: Automated classification of benign and malignant cells from lung cytological images using deep convolutional neural network. Inform. Med. Unlocked 16, 100205 (2019)

    Article  Google Scholar 

  28. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  29. Wei, Z., Cheng, S., Liu, X., Zeng, S.: An efficient cervical whole slide image analysis framework based on multi-scale semantic and spatial deep features. arXiv preprint arXiv:2106.15113 (2021)

  30. William, W., Ware, A., Basaza-Ejiri, A.H., Obungoloch, J.: Cervical cancer classification from pap-smears using an enhanced fuzzy c-means algorithm. Inform. Med. Unlocked 14, 23–33 (2019)

    Article  Google Scholar 

  31. Woo, S., Park, J., Lee, J.Y., Kweon, I.S.: Cbam: Convolutional block attention module. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 3–19 (2018)

    Google Scholar 

  32. Xiang, Y., Sun, W., Pan, C., Yan, M., Yin, Z., Liang, Y.: A novel automation-assisted cervical cancer reading method based on convolutional neural network. Biocyberne. Biomed. Eng. 40(2), 611–623 (2020)

    Article  Google Scholar 

  33. Xue, Y., et al.: Synthetic augmentation and feature-based filtering for improved cervical histopathology image classification. In: Shen, D. (ed.) MICCAI 2019. LNCS, vol. 11764, pp. 387–396. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_43

    Chapter  Google Scholar 

  34. Ye, H., Song, T., Zeng, X., Li, L., Hou, M., Xi, M.: Association between genital mycoplasmas infection and human papillomavirus infection, abnormal cervical cytopathology, and cervical cancer: a systematic review and meta-analysis. Archives Gynecol. Obstetrics 297(6), 1377–1387 (2018). https://doi.org/10.1007/s00404-018-4733-5

    Article  Google Scholar 

  35. Zeiler, Matthew D.., Fergus, Rob: Visualizing and understanding convolutional networks. In: Fleet, David, Pajdla, Tomas, Schiele, Bernt, Tuytelaars, Tinne (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53

    Chapter  Google Scholar 

  36. Zhang, C., et al.: DCCL: a benchmark for cervical cytology analysis. In: Suk, Heung-Il., Liu, Mingxia, Yan, Pingkun, Lian, Chunfeng (eds.) MLMI 2019. LNCS, vol. 11861, pp. 63–72. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32692-0_8

    Chapter  Google Scholar 

  37. Zhang, L., et al.: Automation-assisted cervical cancer screening in manual liquid-based cytology with hematoxylin and eosin staining. Cytometry Part A 85(3), 214–230 (2014)

    Article  Google Scholar 

  38. Zhang, L., Lu, L., Nogues, I., Summers, R.M., Liu, S., Yao, J.: Deeppap: deep convolutional networks for cervical cell classification. IEEE J. Bbiomed. Health Inform. 21(6), 1633–1643 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liwei Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Peng, Z. et al. (2023). Deep Adaptively Feature Extracting Network for Cervical Squamous Lesion Cell Detection. In: Xu, Y., Yan, H., Teng, H., Cai, J., Li, J. (eds) Machine Learning for Cyber Security. ML4CS 2022. Lecture Notes in Computer Science, vol 13656. Springer, Cham. https://doi.org/10.1007/978-3-031-20099-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20099-1_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20098-4

  • Online ISBN: 978-3-031-20099-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics