Abstract
With the continuous development of cloud computing and storage, searchable encryption as a key technology has attracted wide attention. However, existing statistical-based models face long document feature vectors and can not fully catch the document semantics information. This leads to inefficient and unsatisfactory retrieval results. In this paper, we propose a deep structured semantic model of ranked search over encrypted data (DSRSE) based on a convolutional neural network for the first time. In this scheme, document index vectors and query trapdoors are generated by the convolutional neural network model (CNNM) and encrypted by the secure kNN algorithm. In order to protect documents’ privacy security, we use private cloud servers to train the CNNM distributively. All parameters are updated constantly, and the CNNM is updated regularly. Furthermore, a clustering tree based index structure is proposed. Through inner product of document vectors, semantically similar files are clustered together for building a bottom-up index tree which enhances the retrieval efficiency. Analysis and experiments on real datasets illustrate that our schemes perform well in terms of privacy security, search efficiency and accuracy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Andola, N., Prakash, S., Yadav, V.K., Venkatesan, S., Verma, S., et al.: A secure searchable encryption scheme for cloud using hash-based indexing. J. Comput. Syst. Sci. 126, 119–137 (2022)
Bao, Y., Qiu, W., Cheng, X.: Secure and lightweight fine-grained searchable data sharing for IoT-oriented and cloud-assisted smart healthcare system. IEEE Internet Things J. 9(4), 2513–2526 (2021)
Cao, N., Wang, C., Li, M., Ren, K., Lou, W.: Privacy-preserving multi-keyword ranked search over encrypted cloud data. IEEE Trans. Parallel Distrib. Syst. 25(1), 222–233 (2013)
Chen, C., Zhu, X., Shen, P., Guo, S., Tari, Z., Zomaya, A.Y.: An efficient privacy-preserving ranked keyword search method. IEEE Trans. Parallel Distrib. Syst. 27(4), 951–963 (2015)
Chuah, M., Hu, W.: Privacy-aware bedtree based solution for fuzzy multi-keyword search over encrypted data. In: 2011 31st International Conference on Distributed Computing Systems Workshops, pp. 273–281. IEEE (2011)
Dean, J., Corrado, G.S., Monga, R., Chen, K., Ng, A.Y.: Large scale distributed deep networks. Adv. Neural Inf. Process. Syst. 25 (2012)
Deng, C., Yang, E., Liu, T., Li, J., Liu, W., Tao, D.: Unsupervised semantic-preserving adversarial hashing for image search. IEEE Trans. Image Process. 28(8), 4032–4044 (2019)
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)
Fu, Z., Ren, K., Shu, J., Sun, X., Huang, F.: Enabling personalized search over encrypted outsourced data with efficiency improvement. IEEE Trans. Parallel Distrib. Syst. 27(9), 2546–2559 (2015)
Fu, Z., Wang, Y., Sun, X., Zhang, X.: Semantic and secure search over encrypted outsourcing cloud based on BERT. Front. Comput. Sci. 16(2), 1–8 (2022). https://doi.org/10.1007/s11704-021-0277-0
Fu, Z., Wu, X., Guan, C., Sun, X., Ren, K.: Toward efficient multi-keyword fuzzy search over encrypted outsourced data with accuracy improvement. IEEE Trans. Inf. Forensics Secur. 11(12), 2706–2716 (2016)
González-Carvajal, S., Garrido-Merchán, E.C.: Comparing BERT against traditional machine learning text classification. arXiv preprint arXiv:2005.13012 (2020)
He, W., Zhang, Y., Li, Y.: Fast, searchable, symmetric encryption scheme supporting ranked search. Symmetry 14(5), 1029 (2022)
He, X., Deng, L., Chou, W.: Discriminative learning in sequential pattern recognition. IEEE Signal Process. Mag. 25(5), 14–36 (2008)
Hu, Z., Dai, H., Yang, G., Yi, X., Sheng, W.: Semantic-based multi-keyword ranked search schemes over encrypted cloud data. Secur. Commun. Netw. 2022 (2022)
Hua, Y., Zhang, D., Ge, S.: Research progress in the interpretability of deep learning models. J. Cybersecur. 5(3), 1–12 (2020)
Huang, P.S., He, X., Gao, J., Deng, L., Acero, A., Heck, L.: Learning deep structured semantic models for web search using clickthrough data. In: Proceedings of the 22nd ACM International Conference on Information & Knowledge Management, pp. 2333–2338 (2013)
Jadhav, N., Nikam, J., Bahekar, S.: Semantic search supporting similarity ranking over encrypted private cloud data. Int. J. Emerg. Eng. Res. Technol. 2(7), 215–219 (2014)
Järvelin, K., Kekäläinen, J.: IR evaluation methods for retrieving highly relevant documents. In: ACM SIGIR Forum, vol. 51, pp. 243–250. ACM, NY (2017)
Li, H., Yang, Y., Luan, T.H., Liang, X., Zhou, L., Shen, X.S.: Enabling fine-grained multi-keyword search supporting classified sub-dictionaries over encrypted cloud data. IEEE Trans. Dependable Secure Comput. 13(3), 312–325 (2015)
Li, J., Yan, H., Zhang, Y.: Efficient identity-based provable multi-copy data possession in multi-cloud storage. IEEE Trans. Cloud Comput. (2019)
Li, X., Long, G., Li, S.: Encrypted medical records search with supporting of fuzzy multi-keyword and relevance ranking. In: Sun, X., Zhang, X., Xia, Z., Bertino, E. (eds.) ICAIS 2021. LNCS, vol. 12737, pp. 85–101. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78612-0_7
Liu, G., Guo, J.: Bidirectional LSTM with attention mechanism and convolutional layer for text classification. Neurocomputing 337, 325–338 (2019)
Miao, Y., Ma, J., Liu, X., Weng, J., Li, H., Li, H.: Lightweight fine-grained search over encrypted data in fog computing. IEEE Trans. Serv. Comput. 12(5), 772–785 (2018)
Montavon, G., Orr, G.B., Müller, K.-R. (eds.): Neural Networks: Tricks of the Trade. LNCS, vol. 7700. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35289-8
Palangi, H., et al.: Deep sentence embedding using long short-term memory networks: analysis and application to information retrieval. IEEE/ACM Trans. Audio Speech Lang. Process. 24(4), 694–707 (2016)
Shen, Y., He, X., Gao, J., Deng, L., Mesnil, G.: A latent semantic model with convolutional-pooling structure for information retrieval. In: Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management, pp. 101–110 (2014)
Siva Kumar, D.V.N., Santhi Thilagam, P.: Searchable encryption approaches: attacks and challenges. Knowl. Inf. Syst. 61(3), 1179–1207 (2018). https://doi.org/10.1007/s10115-018-1309-4
Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted data. In: Proceeding 2000 IEEE Symposium on Security and Privacy. S &P 2000, pp. 44–55. IEEE (2000)
Sousa, S., Kern, R.: How to keep text private? A systematic review of deep learning methods for privacy-preserving natural language processing. Artif. Intell. Rev. 1–66 (2022). https://doi.org/10.1007/s10462-022-10204-6
Tian, P., Guo, C., Choo, K.K.R., Liu, Y., Li, L., Yao, L.: EAFS: an efficient, accurate, and forward secure searchable encryption scheme supporting range search. IEEE Syst. J. (2021)
Wang, C., Cao, N., Ren, K., Lou, W.: Enabling secure and efficient ranked keyword search over outsourced cloud data. IEEE Trans. Parallel Distrib. Syst. 23(8), 1467–1479 (2011)
Wang, C., et al.: Enriching query semantics for code search with reinforcement learning. Neural Netw. 145, 22–32 (2022)
Wang, R., Li, Z., Cao, J., Chen, T.: Chinese text feature extraction and classification based on deep learning. In: Proceedings of the 3rd International Conference on Computer Science and Application Engineering, pp. 1–5 (2019)
Wong, W.K., Cheung, D.W., Kao, B., Mamoulis, N.: Secure kNN computation on encrypted databases. In: Proceedings of the 2009 ACM SIGMOD International Conference on Management of Data, pp. 139–152 (2009)
Xia, Z., Wang, X., Sun, X., Wang, Q.: A secure and dynamic multi-keyword ranked search scheme over encrypted cloud data. IEEE Trans. Parallel Distrib. Syst. 27(2), 340–352 (2015)
Xia, Z., Zhu, Y., Sun, X., Chen, L.: Secure semantic expansion based search over encrypted cloud data supporting similarity ranking. J. Cloud Comput. 3(1), 1–11 (2014)
Yang, G., Guo, J., Han, L., Liu, X., Tian, C.: An improved secure certificateless public-key searchable encryption scheme with multi-trapdoor privacy. Peer-to-Peer Netw. Appl. 15(1), 503–515 (2022). https://doi.org/10.1007/s12083-021-01253-9
Yang, J., Zou, B., Qiu, H., Li, Z.: MLFNet-point cloud semantic segmentation convolution network based on multi-scale feature fusion. IEEE Access 9, 44950–44962 (2021)
Yang, W., Sun, B., Ma, X., Zhu, Y.: A cross-lingual secure semantic searching scheme with semantic analysis on ciphertext. Electron. Lett. 58(3), 103–105 (2022)
Yang, Y., Liu, X., Deng, R.H.: Multi-user multi-keyword rank search over encrypted data in arbitrary language. IEEE Trans. Dependable Secure Comput. 17(2), 320–334 (2017)
Zeng, M., Qian, H.F., Chen, J., Zhang, K.: Forward secure public key encryption with keyword search for outsourced cloud storage. IEEE Trans. Cloud Comput. (2019)
Zhang, L., Xiong, H., Huang, Q., Li, J., Choo, K.K.R., Li, J.: Cryptographic solutions for cloud storage: challenges and research opportunities. IEEE Trans. Serv. Comput. (2019)
Zhang, M., Chen, Y., Huang, J.: SE-PPFM: a searchable encryption scheme supporting privacy-preserving fuzzy multikeyword in cloud systems. IEEE Syst. J. 15(2), 2980–2988 (2020)
Zhang, W., Gupta, S., Lian, X., Liu, J.: Staleness-aware Async-SGD for distributed deep learning. arXiv preprint arXiv:1511.05950 (2015)
Zhang, X., Zhao, B., Qin, J., Hou, W., Su, Y., Yang, H.: Practical wildcard searchable encryption with tree-based index. Int. J. Intell. Syst. 36(12), 7475–7499 (2021)
Zhao, S., Zhang, H., Zhang, X., Li, W., Gao, F., Wen, Q.: Forward privacy multikeyword ranked search over encrypted database. Int. J. Intell. Syst. (2022)
Acknowledgments
This work was supported by the National Natural Science Foundation of China under Grant Numbers: 62001055, 62102017, 61932014, 61972018 and the Fundamental Research Funds for the Central Universities (YWF-22-L-1273).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
A Appendix
A Appendix



Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Wang, N. et al. (2023). Privacy-Preserving Searchable Encryption Scheme Based on Deep Structured Semantic Model over Cloud Application. In: Xu, Y., Yan, H., Teng, H., Cai, J., Li, J. (eds) Machine Learning for Cyber Security. ML4CS 2022. Lecture Notes in Computer Science, vol 13656. Springer, Cham. https://doi.org/10.1007/978-3-031-20099-1_49
Download citation
DOI: https://doi.org/10.1007/978-3-031-20099-1_49
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20098-4
Online ISBN: 978-3-031-20099-1
eBook Packages: Computer ScienceComputer Science (R0)