Skip to main content

Decomposition and Merging Co-operative Particle Swarm Optimization with Random Grouping

  • Conference paper
  • First Online:
Swarm Intelligence (ANTS 2022)

Abstract

Particle swarm optimization (PSO) does not scale well to large-scale optimization problems (LSOPs). A divide-and-conquer approach towards solving LSOPs has been shown to be very effective in scaling PSO, resulting in a family of co-operative PSO (CPSO) algorithms. Recently, two adaptive co-operative PSO approaches have been developed to improve performance on non-separable problems, namely decomposition CPSO (DCPSO) and merging CPSO (MCPSO). Though DCPSO and MCPSO were shown to perform competitively, they are limited in their ability to explore variable groupings. This paper proposes incorporating random grouping of decision variables into DCPSO (RG-DCPSO) and MCPSO (RG-MCPSO) to better cope with complex variable dependencies. These algorithms were compared to results from five other decomposition-based approaches in order to determine if applying random grouping to DCPSO and MCPSO leads to an improvement in performance. The empirical results show that when applied to function optimization problems, RG-DCPSO was able to achieve the best overall final objective function values in environments with up to 1000 dimensions. The results also show that RG-MCPSO performs well for non-separable objective functions in large-dimensional spaces with 500 and 1000 dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    \(n_x\) is the number of decision variables.

References

  1. Barry, W.: Generating aesthetically pleasing images in a virtual environment using particle swarm optimization. Ph.D. thesis, Brock University (2012)

    Google Scholar 

  2. Clark, M.: Comparative study on cooperative particle swarm optimization decomposition methods for large-scale optimization. Master’s thesis, Brock University, March 2021. https://dr.library.brocku.ca/handle/10464/15031

  3. Cleghorn, C.W., Engelbrecht, A.P.: Particle swarm convergence: an empirical investigation. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 2524–2530. IEEE (2014)

    Google Scholar 

  4. Douglas, J., Engelbrecht, A.P., Ombuki-Berman, B.M.: Merging and decomposition variants of cooperative particle swarm optimization: new algorithms for large scale optimization problems. In: Proceedings of the 2nd International Conference on Intelligent Systems, Metaheuristics and Swarm Intelligence, pp. 70–77. ACM (2018)

    Google Scholar 

  5. Erwin, K., Engelbrecht, A.P.: Set-based particle swarm optimization for portfolio optimization. In: Dorigo, M., et al. (eds.) ANTS 2020. LNCS, vol. 12421, pp. 333–339. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60376-2_28

    Chapter  Google Scholar 

  6. Hajihassani, M., Armaghani, D.J., Kalatehjari, R.: Applications of particle swarm optimization in geotechnical engineering: a comprehensive review. Geotech. Geol. Eng. 36, 705–722 (2018)

    Article  Google Scholar 

  7. Hereford, J.M.: A distributed particle swarm optimization algorithm for swarm robotic applications. In: IEEE International Congress on Evolutionary Computation, pp. 1678–1685. IEEE (2006)

    Google Scholar 

  8. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)

    Google Scholar 

  9. Khare, A., Rangnekar, S.: A review of particle swarm optimization and its applications in solar photovoltaic system. Appl. Soft Comput. 13(5), 2997–3006 (2013)

    Article  Google Scholar 

  10. Kruskal, W.H., Wallis, W.A.: Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 47(260), 583–621 (1952)

    Article  MATH  Google Scholar 

  11. Li, X., Yao, X.: Cooperatively coevolving particle swarms for large scale optimization. IEEE Trans. Evol. Comput. 16(2), 210–224 (2012)

    Article  MathSciNet  Google Scholar 

  12. Mann, H.B., Whitney, D.R.: On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat. 18(1), 50–60 (1947)

    Article  MathSciNet  MATH  Google Scholar 

  13. Neethling, M., Engelbrecht, A.: Determining RNA secondary structure using set-based particle swarm optimization. In: Proceedings of the IEEE Congress on Evolutionary Computation (2006)

    Google Scholar 

  14. Oldewage, E.T.: The perils of particle swarm optimization in high dimensional problem spaces. Master’s thesis, University of Pretoria (2017)

    Google Scholar 

  15. Oldewage, E.T., Engelbrecht, A.P., Cleghorn, C.W.: The merits of velocity clamping particle swarm optimisation in high dimensional spaces. In: Proceedings of the IEEE Symposium Series on Computational Intelligence, pp. 1–8 (2017)

    Google Scholar 

  16. Oldewage, E.T., Engelbrecht, A.P., Cleghorn, C.W.: Boundary constraint handling techniques for particle swarm optimization in high dimensional problem spaces. In: Dorigo, M., Birattari, M., Blum, C., Christensen, A.L., Reina, A., Trianni, V. (eds.) ANTS 2018. LNCS, vol. 11172, pp. 333–341. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00533-7_27

    Chapter  Google Scholar 

  17. Oldewage, E.T., Engelbrecht, A.P., Cleghorn, C.W.: Movement patterns of a particle swarm in high dimensional spaces. Inf. Sci. 512, 1043–1062 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  18. Pluhacek, M., Senkerik, R., Viktorin, A., Kadavt, T., Zelinka, I.: A review of real-world applications of particle swarm optimization algorithm. In: Proceedings of the International Conference on Advanced Engineering Theory and Applications (2017)

    Google Scholar 

  19. Shi, Y., Eberhart, R.C.: Parameter selection in particle swarm optimization. In: Proceedings of Evolutionary Programming VII, pp. 591–600 (2005)

    Google Scholar 

  20. Sopov, E., Vakhnin, A., Semenkin, E.: On tuning group sizes in the random adaptive grouping algorithm for large-scale global optimization problems. In: Proceedings of the International Conference on Applied Mathematics Computational Science, pp. 134–13411 (2018)

    Google Scholar 

  21. Sun, Y., Kirley, M., Halgamuge, S.K.: A recursive decomposition method for large scale continuous optimization. IEEE Trans. Evol. Comput. 22(5), 647–661 (2018)

    Article  Google Scholar 

  22. Tang, K., Li, X., Suganthan, P.N., Yang, Z., Weise, T.: Benchmark functions for the CEC 2010 special session and competition on large-scale global optimization (2010)

    Google Scholar 

  23. Van den Bergh, F., Engelbrecht, A.P.: A cooperative approach to particle swarm optimization. IEEE Trans. Evol. Comput. 8(3), 225–239 (2004)

    Article  Google Scholar 

  24. Van der Merwe, D., Engelbrecht, A.: Data clustering using particle swarm optimization. In: Proceedings of IEEE Congress on Evolutionary Computation, vol. 1, pp. 215–220, December 2003

    Google Scholar 

  25. Yang, Z., Tang, K., Yao, X.: Large scale evolutionary optimization using cooperative coevolution. Inf. Sci. 178(15), 2985–2999 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zeng, T., et al.: Artificial bee colony based on adaptive search strategy and random grouping mechanism. Expert Syst. Appl. 192, 116332 (2022)

    Article  Google Scholar 

  27. Zhang, W., Ma, D., Wei, J., Liang, H.: A parameter selection strategy for particle swarm optimization based on particle positions. Expert Syst. Appl. 41(7), 3576–3584 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andries Engelbrecht .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

McNulty, A., Ombuki-Berman, B., Engelbrecht, A. (2022). Decomposition and Merging Co-operative Particle Swarm Optimization with Random Grouping. In: Dorigo, M., et al. Swarm Intelligence. ANTS 2022. Lecture Notes in Computer Science, vol 13491. Springer, Cham. https://doi.org/10.1007/978-3-031-20176-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20176-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20175-2

  • Online ISBN: 978-3-031-20176-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics