Skip to main content

An Approach Based on Particle Swarm Optimization for Inspection of Spacecraft Hulls by a Swarm of Miniaturized Robots

  • Conference paper
  • First Online:
Swarm Intelligence (ANTS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13491))

Included in the following conference series:

  • 1307 Accesses

Abstract

The remoteness and hazards that are inherent to the operating environments of space infrastructures promote their need for automated robotic inspection. In particular, micrometeoroid and orbital debris impact and structural fatigue are common sources of damage to spacecraft hulls. Vibration sensing has been used to detect structural damage in spacecraft hulls as well as in structural health monitoring practices in industry by deploying static sensors. In this paper, we propose using a swarm of miniaturized vibration-sensing mobile robots realizing a network of mobile sensors. We present a distributed inspection algorithm based on the bio-inspired particle swarm optimization and evolutionary algorithm niching techniques to deliver the task of enumeration and localization of an a priori unknown number of vibration sources on a simplified 2.5D spacecraft surface. Our algorithm is deployed on a swarm of simulated cm-scale wheeled robots. These are guided in their inspection task by sensing vibrations arising from failure points on the surface which are detected by on-board accelerometers. We study three performance metrics: (1) proximity of the localized sources to the ground truth locations, (2) time to localize each source, and (3) time to finish the inspection task given a 75% inspection coverage threshold. We find that our swarm is able to successfully localize the present sources accurately and complete the predefined inspection coverage threshold.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Russian cosmonauts find new cracks in ISS module. Reuters (2021). https://www.reuters.com/lifestyle/science/russian-cosmonauts-find-new-cracks-iss-module-2021-08-30/

  2. Abu-Mahfouz, I., Banerjee, A.: Crack detection and identification using vibration signals and fuzzy clustering. Procedia Comput. Sci. 114, 266–274 (2017)

    Article  Google Scholar 

  3. Aloor, J.J., Sajeev, S., Shakya, A.: Space Robotics versus Humans in Space (2020)

    Google Scholar 

  4. Arkin, E.M., Fekete, S.P., Mitchell, J.S.: Approximation algorithms for lawn mowing and milling. Comput. Geom. 17(1–2), 25–50 (2000). A preliminary version of this paper was entitled The lawnmower problem and appears in the Proceedings of the 5th Canadian Conference on Computational Geometry, Waterloo, Canada, pp. 461–466 (1993)

    Google Scholar 

  5. Arkin, E.M., Hassin, R.: Approximation algorithms for the geometric covering salesman problem. Discret. Appl. Math. 55(3), 197–218 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. Avci, O., Abdeljaber, O., Kiranyaz, S., Hussein, M., Gabbouj, M., Inman, D.J.: A review of vibration-based damage detection in civil structures: from traditional methods to Machine Learning and Deep Learning applications. Mech. Syst. Signal Process. 147, 107077 (2021)

    Google Scholar 

  7. Bayat, B., Crasta, N., Crespi, A., Pascoal, A.M., Ijspeert, A.: Environmental monitoring using autonomous vehicles: a survey of recent searching techniques. Curr. Opin. Biotechnol. 45, 76–84 (2017). https://doi.org/10.1016/j.copbio.2017.01.009

    Article  Google Scholar 

  8. Bualat, M., et al.: Autonomous robotic inspection for lunar surface operations. In: Laugier, C., Siegwart, R. (eds.) Field and Service Robotics, vol. 42, pp. 169–178. Springer, Cham (2008)

    Chapter  Google Scholar 

  9. Carbone, C., Garibaldi, O., Kurt, Z.: Swarm robotics as a solution to crops inspection for precision agriculture. KnE Eng. 3(1), 552 (2018)

    Article  Google Scholar 

  10. Carrillo-Zapata, D., et al.: Mutual shaping in swarm robotics: user studies in fire and rescue, storage organization, and bridge inspection. Front. Robot. AI 7, 53 (2020)

    Article  Google Scholar 

  11. Chen, X., Huang, J.: Odor source localization algorithms on mobile robots: a review and future outlook. Robot. Auton. Syst. 112, 123–136 (2019)

    Article  Google Scholar 

  12. Dementyev, A., et al.: Rovables: miniature on-body robots as mobile wearables. In: Proceedings of the 29th Annual Symposium on User Interface Software and Technology, Tokyo Japan, pp. 111–120. ACM (2016). https://dl.acm.org/doi/10.1145/2984511.2984531

  13. Doebling, S., Farrar, C., Prime, M., Shevitz, D.: Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: a literature review. Technical report LA-13070-MS, 249299 (1996). https://doi.org/10.2172/249299

  14. Eberhart, R., Kennedy, J.: Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)

    Google Scholar 

  15. Ganesan, V., Das, T., Rahnavard, N., Kauffman, J.L.: Vibration-based monitoring and diagnostics using compressive sensing. J. Sound Vib. 394, 612–630 (2017)

    Article  Google Scholar 

  16. Hyde, J.L., Christiansen, E.L., Lear, D.M.: Observations of MMOD impact damage to the ISS. In: International Orbital Debris Conference. No. JSC-E-DAA-TN75127 (2019)

    Google Scholar 

  17. Jain, U., Tiwari, R., Godfrey, W.W.: Multiple odor source localization using diverse-PSO and group-based strategies in an unknown environment. J. Comput. Sci. 34, 33–47 (2019)

    Article  Google Scholar 

  18. Jatmiko, W., Sekiyama, K., Fukuda, T.: A PSO-based mobile sensor network for odor source localization in dynamic environment: theory, simulation and measurement. In: 2006 IEEE International Conference on Evolutionary Computation, Vancouver, BC, Canada, pp. 1036–1043. IEEE (2006). https://doi.org/10.1109/CEC.2006.1688423

  19. Jing, T., Meng, Q.H., Ishida, H.: Recent progress and trend of robot odor source localization. IEEE Trans. Electr. Electron. Eng. tee.23364 (2021)

    Google Scholar 

  20. Karapetyan, N., Benson, K., McKinney, C., Taslakian, P., Rekleitis, I.: Efficient multi-robot coverage of a known environment. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1846–1852 (2017). http://arxiv.org/abs/1808.02541

  21. Kowadlo, G., Russell, R.A.: Robot odor localization: a taxonomy and survey. Int. J. Robot. Res. 27(8), 869–894 (2008)

    Article  Google Scholar 

  22. Li, J.G., Meng, Q.H., Li, F., Zeng, M., Popescu, D.: Mobile robot based odor source localization via particle filter. In: Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference, Shanghai, China, pp. 2984–2989. IEEE (2009)

    Google Scholar 

  23. Lilienthal, A., Loutfi, A., Duckett, T.: Airborne chemical sensing with mobile robots. Sensors 6(11), 1616–1678 (2006)

    Article  Google Scholar 

  24. Liu, Y., Hajj, M., Bao, Y.: Review of robot-based damage assessment for offshore wind turbines. Renew. Sustain. Energy Rev. 158, 112187 (2022)

    Google Scholar 

  25. McPherson, K., Hrovat, K., Kelly, E., Keller, J.: ISS researcher’s guide: acceleration environment. Technical report, National Aeronautics and Space Administration

    Google Scholar 

  26. Michel, O.: WebotsTM: professional mobile robot simulation. arXiv:cs/0412052 (2004)

  27. Palyulin, V.V., Chechkin, A.V., Metzler, R.: Levy flights do not always optimize random blind search for sparse targets. Proc. Natl. Acad. Sci. 111(8), 2931–2936 (2014)

    Article  Google Scholar 

  28. Pang, B., Song, Y., Zhang, C., Wang, H., Yang, R.: A swarm robotic exploration strategy based on an improved random walk method. J. Robot. 2019, 1–9 (2019)

    Article  Google Scholar 

  29. Pang, S., Farrell, J.: Chemical plume source localization. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 36(5), 1068–1080 (2006)

    Article  Google Scholar 

  30. Park, J.: Special feature vibration-based structural health monitoring. Appl. Sci. 10(15), 5139 (2020)

    Article  Google Scholar 

  31. Persson, E., Anisi, D.A.: A Comparative study of robotic gas source localization algorithms in industrial environments. IFAC Proc. Vol. 44(1), 899–904 (2011)

    Article  Google Scholar 

  32. Pugh, J., Martinoli, A.: Inspiring and modeling multi-robot search with particle swarm optimization. In: 2007 IEEE Swarm Intelligence Symposium, Honolulu, HI, USA, pp. 332–339. IEEE (2007)

    Google Scholar 

  33. Richards, W.L., Madaras, E.I., Prosser, W.H., Studor, G.: NASA applications of structural health monitoring technology. In: International Workshop on Structural Health Monitoring, No. DFRC-E-DAA-TN11102 (2013)

    Google Scholar 

  34. Russell, R., Bab-Hadiashar, A., Shepherd, R.L., Wallace, G.G.: A comparison of reactive robot chemotaxis algorithms. Robot. Auton. Syst. 45(2), 83–97 (2003)

    Article  Google Scholar 

  35. Vergassola, M., Villermaux, E., Shraiman, B.I.: Infotaxis as a strategy for searching without gradients. Nature 445(7126), 406–409 (2007)

    Article  Google Scholar 

  36. Viswanathan, G.M., Buldyrev, S.V., Havlin, S., da Luz, M.G.E., Raposo, E.P., Stanley, H.E.: Optimizing the success of random searches. Nature 401(6756), 911–914 (1999)

    Article  Google Scholar 

  37. Voges, N., Chaffiol, A., Lucas, P., Martinez, D.: Reactive searching and infotaxis in odor source localization. PLoS Comput. Biol. 10(10), e1003861 (2014)

    Google Scholar 

  38. Fan, W., Qiao, P.: Vibration-based damage identification methods: a review and comparative study. Struct. Health Monit. 10(1), 83–111 (2011)

    Article  Google Scholar 

  39. Yang, X.S., Deb, S.: Cuckoo search via Levy flights. In: 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), Coimbatore, India, pp. 210–214. IEEE (2009)

    Google Scholar 

  40. Zhang, J., Gong, D., Zhang, Y.: A niching PSO-based multi-robot cooperation method for localizing odor sources. Neurocomputing 123, 308–317 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. Harald Wild from ETH Zürich for his help with the ANSYS simulations. This work was supported by a Swiss National Science Foundation (SNSF) postdoctoral fellowship award P400P2_191116, an Office of Naval Research (ONR) grant N00014-22-1-2222, and a National Aeronautics and Space Administration (NASA) grant 80NSSC21K0353.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bahar Haghighat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Haghighat, B. et al. (2022). An Approach Based on Particle Swarm Optimization for Inspection of Spacecraft Hulls by a Swarm of Miniaturized Robots. In: Dorigo, M., et al. Swarm Intelligence. ANTS 2022. Lecture Notes in Computer Science, vol 13491. Springer, Cham. https://doi.org/10.1007/978-3-031-20176-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20176-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20175-2

  • Online ISBN: 978-3-031-20176-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics