Skip to main content

A Novel Time-of-Flight Range and Bearing Sensor System for Micro Air Vehicle Swarms

  • Conference paper
  • First Online:
Swarm Intelligence (ANTS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13491))

Included in the following conference series:

Abstract

In this paper, we propose a novel range and bearing sensing (RnB) system for micro-air vehicle (MAV) swarms. The RnB system uses 12 infrared (IR) time-of-flight (ToF) sensors and measures the range and bearing of obstacles and other MAVs. The system incorporated hardware and software filtering to remove ambient noise and interference between different sensors to distinguish between obstacles and kin MAVs. The overall system is 50 mm wide and weighs 12.5 gram. We have installed the system on 5 indoor quadrotors and demonstrated the performance of the RnB system using flocking behavior. To the best of our knowledge, our system is the first IR ToF sensor-based RnB system designed specifically for swarms that enabled the first decentralized flocking on indoor MAVs using only on-board resources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Link to open source hardware/software repository.

  2. 2.

    Link to experiment videos with 5 MAVs.

References

  1. Achtelik, M., et al.: SFly: swarm of micro flying robots. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2649–2650, October 2012

    Google Scholar 

  2. Cai, X., Ye, L., Zhang, Q.: Ensemble learning particle swarm optimization for real-time UWB indoor localization. EURASIP J. Wirel. Commun. Netw. 2018(1), 125 (2018)

    Article  Google Scholar 

  3. Duisterhof, B.P., et al.: Tiny robot learning (tinyRL) for source seeking on a nano quadcopter. In: 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 7242–7248, May 2021

    Google Scholar 

  4. Guo, K., Qiu, Z., Meng, W., Xie, L., Teo, R.: Ultra-wideband based cooperative relative localization algorithm and experiments for multiple unmanned aerial vehicles in GPS denied environments. Int. J. Micro Air Veh. 9(3), 169–186 (2017)

    Article  Google Scholar 

  5. Gutierrez, A., Campo, A., Dorigo, M., Donate, J., Monasterio-Huelin, F., Magdalena, L.: Open E-puck range bearing miniaturized board for local communication in swarm robotics. In: 2009 IEEE International Conference on Robotics and Automation, pp. 3111–3116, May 2009

    Google Scholar 

  6. Kilberg, B.G., Campos, F.M.R., Schindler, C.B., Pister, K.S.J.: Quadrotor-based lighthouse localization with time-synchronized wireless sensor nodes and bearing-only measurements. Sensors 20(14), 3888 (2020)

    Article  Google Scholar 

  7. Kumar, V., Michael, N.: Opportunities and challenges with autonomous micro aerial vehicles. Int. J. Robot. Res. 31(11), 1279–1291 (2012)

    Article  Google Scholar 

  8. Kushleyev, A., Mellinger, D., Powers, C., Kumar, V.: Towards a swarm of agile micro quadrotors. Auton. Robot. 35(4), 287–300 (2013). https://doi.org/10.1007/s10514-013-9349-9

    Article  Google Scholar 

  9. Li, J., Bi, Y., Li, K., Wang, K., Lin, F., Chen, B.M.: Accurate 3D localization for MAV swarms by UWB and IMU fusion. In: 2018 IEEE 14th International Conference on Control and Automation (ICCA), pp. 100–105, June 2018

    Google Scholar 

  10. Liu, Z., West, C., Lennox, B., Arvin, F.: Local bearing estimation for a swarm of low-cost miniature robots. Sensors 20(11), 3308 (2020)

    Article  Google Scholar 

  11. McGuire, K., de Croon, G., De Wagter, C., Tuyls, K., Kappen, H.: Efficient optical flow and stereo vision for velocity estimation and obstacle avoidance on an autonomous pocket drone. IEEE Robot. Autom. Lett. 2(2), 1070–1076 (2017)

    Article  Google Scholar 

  12. Mcguire, K., De Wagter, C., Tuyls, K., Kappen, H., Croon, G.: Minimal navigation solution for a swarm of tiny flying robots to explore an unknown environment. Sci. Robot. 4, eaaw9710 (2019)

    Google Scholar 

  13. Michael, N., Mellinger, D., Lindsey, Q., Kumar, V.: The GRASP multiple micro-UAV testbed. IEEE Robot. Autom. Mag. 17(3), 56–65 (2010)

    Article  Google Scholar 

  14. Nägeli, T., Conte, C., Domahidi, A., Morari, M., Hilliges, O.: Environment-independent formation flight for micro aerial vehicles. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1141–1146, September 2014

    Google Scholar 

  15. Powers, C., Mellinger, D., Kushleyev, A., Kothmann, B., Kumar, V.: Influence of aerodynamics and proximity effects in quadrotor flight. In: Desai, J., Dudek, G., Khatib, O., Kumar, V. (eds.) Experimental Robotics. STAR, vol. 88, pp. 209–302. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-319-00065-7_21

    Chapter  Google Scholar 

  16. Pugh, J., Martinoli, A.: Inspiring and modeling multi-robot search with particle swarm optimization. In: 2007 IEEE Swarm Intelligence Symposium, pp. 332–339, April 2007

    Google Scholar 

  17. Queralta, J.P., Almansa, C.M., Schiano, F., Floreano, D., Westerlund, T.: UWB-based system for UAV localization in GNSS-denied environments: characterization and dataset. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4521–4528, October 2020

    Google Scholar 

  18. Roberts, J.F., Stirling, T., Zufferey, J.C., Floreano, D.: 3-D relative positioning sensor for indoor flying robots. Auton. Robot. 33(1), 5–20 (2012). https://doi.org/10.1007/s10514-012-9277-0

    Article  Google Scholar 

  19. Roelofsen, S., Gillet, D., Martinoli, A.: Reciprocal collision avoidance for quadrotors using on-board visual detection. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4810–4817, September 2015

    Google Scholar 

  20. Saska, M., Vonásek, V., Chudoba, J., Thomas, J., Loianno, G., Kumar, V.: Swarm distribution and deployment for cooperative surveillance by micro-aerial vehicles. J. Intell. Robot. Syst. 84(1), 469–492 (2016). https://doi.org/10.1007/s10846-016-0338-z

    Article  Google Scholar 

  21. Schilling, F., Schiano, F., Floreano, D.: Vision-based drone flocking in outdoor environments. IEEE Robot. Autom. Lett. 6(2), 2954–2961 (2021)

    Article  Google Scholar 

  22. Soria, E., Schiano, F., Floreano, D.: Predictive control of aerial swarms in cluttered environments. Nat. Mach. Intell. 3(6), 545–554 (2021)

    Article  Google Scholar 

  23. Turgut, A.E., Çelikkanat, H., Gökçe, F., Şahin, E.: Self-organized flocking in mobile robot swarms. Swarm Intell. 2(2), 97–120 (2008). https://doi.org/10.1007/s11721-008-0016-2

    Article  Google Scholar 

  24. van der Helm, S., Coppola, M., McGuire, K.N., de Croon, G.C.H.E.: On-board range-based relative localization for micro air vehicles in indoor leader–follower flight. Auton. Robot. 44(3), 415–441 (2019). https://doi.org/10.1007/s10514-019-09843-6

    Article  Google Scholar 

  25. Xiao, F., Zheng, P., di Tria, J., Kocer, B.B., Kovac, M.: Optic flow-based reactive collision prevention for MAVs using the fictitious obstacle hypothesis. IEEE Robot. Autom. Lett. 6(2), 3144–3151 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the EU H2020-FET RoboRoyale (964492).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cem Bilaloğlu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bilaloğlu, C., Şahin, M., Arvin, F., Şahin, E., Turgut, A.E. (2022). A Novel Time-of-Flight Range and Bearing Sensor System for Micro Air Vehicle Swarms. In: Dorigo, M., et al. Swarm Intelligence. ANTS 2022. Lecture Notes in Computer Science, vol 13491. Springer, Cham. https://doi.org/10.1007/978-3-031-20176-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20176-9_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20175-2

  • Online ISBN: 978-3-031-20176-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics