Abstract
iMOACO\(\mathbb {_R}\) is an ant colony optimization algorithm designed to tackle multi-objective optimization problems in continuous search spaces. It is built on top of ACO\(\mathbb {_R}\) and uses the R2 indicator (to improve its performance on high-dimensional objective function spaces) to rank the pheromone archive of the best previously-explored solutions. Due to the utilization of an R2-based selection mechanism, there are typically a large number of tied-ranks in iMOACO\(\mathbb {_R}\)’s pheromone archive. It is worth noting that the solutions of a specific layer share the same importance based on the R2 indicator. A critical issue due to the large number of tied-ranks is a reduction of the algorithm’s exploitation ability. In consequence, in this paper, we propose replacing iMOACO\(\mathbb {_R}\)’s probabilistic solution selection mechanism with a mechanism tailored to these layer-sets. Our proposed layer-set selection uses rank-proportionate (roulette wheel) selection to select a layer, with all the solutions in the layer sharing equally in the layer’s probability. Our experimental evaluation indicates that our proposal, which we call iMOACO\(\mathbb {^{\prime }_{R}}\), performs better than iMOACO\(\mathbb {_R}\) to a statistically significant extent on a large number of benchmark problems having from 3 to 10 objective functions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Brockhoff, D., Friedrich, T., Neumann, F.: Analyzing hypervolume indicator based algorithms. In: Rudolph, G., Jansen, T., Beume, N., Lucas, S., Poloni, C. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 651–660. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87700-4_65
Brockhoff, D., Wagner, T., Trautmann, H.: On the properties of the R2 indicator. In: Proceedings 2012 Genetic and Evolutionary Computation Conference (GECCO-2012), Philadelphia, PA, USA, pp. 465–472. ACM Press, July 2012
Coello Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary Algorithms for Solving Multi-Objective Problems. Springer, New York (2007). https://doi.org/10.1007/978-1-4757-5184-0
Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable multi-objective optimization test problems. In: Proceedings 2002 IEEE Congress on Evolutionary Computation (CEC 2002), Piscataway, NJ, USA, vol. 1, pp. 825–830. IEEE Press (2002)
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)
Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)
Falcón-Cardona, J.G., Coello Coello, C.A.: A new indicator-based many-objective ant colony optimizer for continuous search spaces. Swarm Intell. 11(1), 71–100 (2017). https://doi.org/10.1007/s11721-017-0133-x
Foncesca, C.M., Paquete, L., López-Ibáñez, M.: An improved dimension-sweep algorithm for the hypervolume indicator. In: Proceedings 2006 IEEE Congress on Evolutionary Computation (CEC-2006), Piscataway, NJ, USA, pp. 1157–1163. IEEE Press (2016)
Fonsesca, C.M., López-Ibáñez, M., Paquete, L., Guerreiro, A.P.: Computation of the hypervolume indicator. http://iridia.ulb.ac.be/manuel/hypervolume. Accessed May 2017
Hernández Gómez, R., Coello Coello, C.A.: Improved metaheuristic based on the R2 indicator for many-objective optimization. In: Proceedings 2015 Genetic and Evolutionary Computation Conference (GECCO-2015), Madrid, Spain, pp. 679–686. ACM Press, July 2015
Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. University of Michigan Press, Ann Arbor (1975)
Huband, S., Hingston, P., Barone, L., While, L.: A review of multiobjective test problems and a scalable test problem toolkit. IEEE Trans. Evol. Comput. 10, 477–506 (2006)
Liao, T., Socha, K., de Oca, M.M., Stützle, T., Dorigo, M.: Ant colony optimization for mixed-variable optimization problems. IEEE Trans. Evol. Comput. 18, 503–518 (2014)
Socha, K., Blum, C.: An ant colony optimization algorithm for continuous optimization: application to feed-forward neural network training. Neural Comput. Appl. 16, 235–247 (2007). https://doi.org/10.1007/s00521-007-0084-z
Socha, K., Dorigo, M.: Ant colony optimization for continuous domains. Eur. J. Oper. Res. 185, 1155–1173 (2008)
Tian, Y., et al.: Evolutionary large-scale multi-objective optimization: a survey. ACM Comput. Surv. 54(8), 1–34 (2021)
Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca, V.G.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evol. Comput. 7(2), 117–132 (2003)
Acknowledgements
The last author acknowledges support from CONACyT project no. 1920.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Abdelbar, A.M., Humphries, T., Falcón-Cardona, J.G., Coello Coello, C.A. (2022). An Extension of the iMOACO\(\mathbb {_R}\) Algorithm Based on Layer-Set Selection. In: Dorigo, M., et al. Swarm Intelligence. ANTS 2022. Lecture Notes in Computer Science, vol 13491. Springer, Cham. https://doi.org/10.1007/978-3-031-20176-9_22
Download citation
DOI: https://doi.org/10.1007/978-3-031-20176-9_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20175-2
Online ISBN: 978-3-031-20176-9
eBook Packages: Computer ScienceComputer Science (R0)