Abstract
Multi-objective particle swarm optimizers (MOPSOs) have been widely used to deal with optimization problems having two or more conflicting objectives. As happens with other metaheuristics, finding the most adequate parameters settings for MOPSOs is not a trivial task, and it is even harder to choose structural components that determine the algorithm’s design. Thus, it is an open question whether automatically-designed MOPSOs can outperform the best human-designed MOPSOs from the literature. In this paper, we first design and develop a component-based architecture and an algorithmic template, called AMOPSO, for the auto-design and auto-configuration of MOPSOs using jMetal and we integrate it with irace, an automatic-configuration tool. Second, by taking as our starting point two algorithms (OMOPSO and SMPSO), we conduct a study focused on automatically generating three AMOPSO variants by using different well-known multi-objective benchmarking problem families (ZDT, DTLZ, and WFG) as training problems for automatic design, and then we analyze whether they improve upon the initial versions of the algorithms and how their components differ. Experiments show that the two AMOPSO variants obtained from using, respectively, the ZDT and DTLZ problems for training are able to statistically outperform the SMPSO and OMOPSO algorithms in all three benchmark families previously indicated.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Beume, N., Naujoks, B., Emmerich, M.T.M.: SMS-EMOA: multiobjective selection based on dominated hypervolume. Eur. J. Oper. Res. 181(3), 1653–1669 (2007). https://doi.org/10.1016/j.ejor.2006.08.008
Bezerra, L.C.T., López-Ibáñez, M., Stützle, T.: Automatically designing state-of-the-art multi- and many-objective evolutionary algorithms. Evol. Comput. 28(2), 195–226 (2020). https://doi.org/10.1162/evco_a_00263
Birattari, M., Stützle, T., Paquete, L., Varrentrapp, K.: A racing algorithm for configuring metaheuristics. In: Langdon, W.B., et al. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2002, pp. 11–18. Morgan Kaufmann Publishers, San Francisco (2002)
Camacho-Villalón, C.L., Stützle, T., Dorigo, M.: PSO-X: a component-based framework for the automatic design of particle swarm optimization algorithms. IEEE Trans. Evol. Comput. (2021). https://doi.org/10.1109/TEVC.2021.3102863
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002). https://doi.org/10.1109/4235.996017
Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolutionary multiobjective optimization. In: Abraham, A., Jain, L., Goldberg, R. (eds.) Evolutionary Multiobjective Optimization. AI &KP, pp. 105–145. Springer, London (2005). https://doi.org/10.1007/1-84628-137-7_6
Durillo, J.J., Nebro, A.J.: jMetal: a Java framework for multi-objective optimization. Adv. Eng. Softw. 42(10), 760–771 (2011). https://doi.org/10.1016/j.advengsoft.2011.05.014
Huband, S., Hingston, P., Barone, L., While, L.: A review of multiobjective test problems and a scalable test problem toolkit. IEEE Trans. Evol. Comput. 10(5), 477–506 (2006). https://doi.org/10.1109/TEVC.2005.861417
Ishibuchi, H., Masuda, H., Nojima, Y.: A study on performance evaluation ability of a modified inverted generational distance indicator. In: Silva, S., Esparcia-Alcázar, A.I. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2015, pp. 695–702. ACM Press, New York (2015)
de Lima, R.H.R., Pozo, A.T.R.: A study on auto-configuration of multi-objective particle swarm optimization algorithm. In: Proceedings of the 2017 Congress on Evolutionary Computation (CEC 2017), pp. 718–725. IEEE Press, Piscataway (2017). https://doi.org/10.1109/CEC.2017.7969381
López-Ibáñez, M., Dubois-Lacoste, J., Pérez Cáceres, L., Stützle, T., Birattari, M.: The irace package: iterated racing for automatic algorithm configuration. Oper. Res. Perspect. 3, 43–58 (2016). https://doi.org/10.1016/j.orp.2016.09.002
Nebro, A.J., Durillo, J.J., Coello Coello, C.A.: Analysis of leader selection strategies in a multi-objective Particle Swarm Optimizer. In: Proceedings of the 2013 Congress on Evolutionary Computation (CEC 2013), pp. 3153–3160. IEEE Press, Piscataway (2013). https://doi.org/10.1109/CEC.2013.6557955
Nebro, A.J., Durillo, J.J., García-Nieto, J., Coello Coello, C.A., Luna, F., Alba, E.: SMPSO: a new PSO-based metaheuristic for multi-objective optimization. In: 2009 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making (MCDM), pp. 66–73 (2009). https://doi.org/10.1109/MCDM.2009.4938830
Nebro, A.J., Durillo, J.J., Vergne, M.: Redesigning the jMetal multi-objective optimization framework. In: Jiménez Laredo, J.L., Silva, S., Esparcia-Alcázar, A.I. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference Companion, GECCO Companion 2015, pp. 1093–1100. ACM Press, New York (2015)
Nebro, A.J., López-Ibáñez, M., Barba-González, C., García-Nieto, J.: Automatic configuration of NSGA-II with jMetal and irace. In: López-Ibáñez, M., Auger, A., Stützle, T. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference Companion, GECCO Companion 2019, pp. 1374–1381. ACM Press, New York (2019). https://doi.org/10.1145/3319619.3326832
Nebro, A.J., Luna, F., Alba, E., Dorronsoro, B., Durillo, J.J., Beham, A.: AbYSS: adapting scatter search to multiobjective optimization. IEEE Trans. Evol. Comput. 12(4) (2008)
Reyes-Sierra, M., Coello Coello, C.A.: Multi-objective particle swarm optimizers: a survey of the state-of-the-art. Int. J. Comput. Intell. Res. 2(3), 287–308 (2006)
Sierra, M.R., Coello Coello, C.A.: Improving PSO-based multi-objective optimization using crowding, mutation and \(\epsilon \)-dominance. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 505–519. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31880-4_35
Santiago, A., Dorronsoro, B., Nebro, A.J., Durillo, J.J., Castillo, O., Fraire, H.J.: A novel multi-objective evolutionary algorithm with fuzzy logic based adaptive selection of operators: fame. Inf. Sci. 471, 233–251 (2019). https://doi.org/10.1016/j.ins.2018.09.005. https://www.sciencedirect.com/science/article/pii/S0020025518306959
Stützle, T., López-Ibáñez, M.: Automated design of metaheuristic algorithms. In: Gendreau, M., Potvin, J.-Y. (eds.) Handbook of Metaheuristics. ISORMS, vol. 272, pp. 541–579. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-91086-4_17
Zitzler, E., Thiele, L., Deb, K.: Comparison of multiobjective evolutionary algorithms: empirical results. Evol. Comput. 8(2), 173–195 (2000). https://doi.org/10.1162/106365600568202
Acknowledgements
This work has been partially funded by the Spanish Ministry of Science and Innovation via Grant PID2020-112540RB-C41 (AEI/FEDER, UE) and the Andalusian PAIDI program with grant P18-RT-2799. M. López-Ibáñez is a “Beatriz Galindo” Senior Distinguished Researcher (BEAGAL 18/00053) funded by the Spanish Ministry of Science and Innovation (MICINN). Carlos A. Coello Coello gratefully acknowledges support from CONACyT grant no. 2016-01-1920 (Investigación en Fronteras de la Ciencia 2016).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Doblas, D., Nebro, A.J., López-Ibáñez, M., García-Nieto, J., Coello Coello, C.A. (2022). Automatic Design of Multi-objective Particle Swarm Optimizers. In: Dorigo, M., et al. Swarm Intelligence. ANTS 2022. Lecture Notes in Computer Science, vol 13491. Springer, Cham. https://doi.org/10.1007/978-3-031-20176-9_3
Download citation
DOI: https://doi.org/10.1007/978-3-031-20176-9_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20175-2
Online ISBN: 978-3-031-20176-9
eBook Packages: Computer ScienceComputer Science (R0)