Skip to main content

Stability-Guided Particle Swarm Optimization

  • Conference paper
  • First Online:
Swarm Intelligence (ANTS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13491))

Included in the following conference series:

Abstract

Particle swarm optimization (PSO) performance has been shown to be sensitive to control parameter values. To obtain best possible results, control parameter tuning or self-adaptive PSO implementations are necessary. Theoretical stability analyses have produced stability conditions on the PSO control parameters to guarantee that an equilibrium state is reached. Should control parameter values be chosen to satisfy a stability condition, divergent and cyclic search behaviour is prevented, and particles are guaranteed to stop moving. This paper proposes that control parameter values be randomly sampled to satisfy a given stability condition, removing the need for control parameter tuning. Empirical results show that the resulting stability-guided PSO performs competitively to a PSO with tuned control parameter values.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adorio, E.: MVF – Multivariate Test Functions Library in C for Unconstrained Global Optimization. Technical report. University of the Philippines Diliman (2005)

    Google Scholar 

  2. Al-Roomi, A.: Unconstrained Single-Objective Benchmark Functions Repository (2015). https://www.al-roomi.org/benchmarks/unconstrained

  3. Balaprakash, P., Birattari, M., Stützle, T.: Improvement strategies for the F-Race algorithm: sampling design and iterative refinement. In: Bartz-Beielstein, T., et al. (eds.) HM 2007. LNCS, vol. 4771, pp. 108–122. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75514-2_9

    Chapter  Google Scholar 

  4. Beielstein, T., Parsopoulos, K.E., Vrahatis, M.N.: Tuning PSO parameters through sensitivity analysis. Universitätsbibliothek Dortmund (2002)

    Google Scholar 

  5. Birattari, M., Stëtzle, T., Paquete, L., Varrentrapp, K.: Racing algorithm for configuring metaheuristics. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 11–18 (2002)

    Google Scholar 

  6. Bonyadi, M.R., Michalewicz, Z.: Impacts of coefficients on movement patterns in the particle swarm optimization algorithm. IEEE Trans. Evol. Comput. 21(3), 378–390 (2016)

    Google Scholar 

  7. Bratton, D., Kennedy, J.: Defining a standard for particle swarm optimization. In: 2007 IEEE Swarm Intelligence Symposium, pp. 120–127. IEEE (2007)

    Google Scholar 

  8. Cleghorn, C., Engelbrecht, A.: A generalized theoretical deterministic particle swarm model. Swarm Intell. 8(1), 35–59 (2014)

    Article  Google Scholar 

  9. Cleghorn, C., Engelbrecht, A.: Particle swarm convergence: an empirical investigation. In: Proceedings of the IEEE Congress on Evolutionary Computation (2014)

    Google Scholar 

  10. Cleghorn, C., Engelbrecht, A.: Particle swarm optimizer: the impact of unstable particles on performance. In: Proceedings of the IEEE Swarm Intelligence Symposium (2016)

    Google Scholar 

  11. Cleghorn, C., Engelbrecht, A.: Particle swarm stability a theoretical extension using the non-stagnate distribution assumption. Swarm Intell. 12(1), 1–22 (2018)

    Article  Google Scholar 

  12. Clerc, M., Kennedy, J.: The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2002)

    Article  Google Scholar 

  13. Dobslaw, F.: A parameter tuning framework for metaheuristics based on design of experiments and artificial neural networks. Int. J. Aerosp. Mech. Eng. 64, 213–216 (2010)

    Google Scholar 

  14. Eberhart, R., Shi, Y.: Comparing inertia weights and constriction factors in particle swarm optimization. In: Proceedings of the IEEE Congress on Evolutionary Computation (2000)

    Google Scholar 

  15. Engelbrecht, A.: Particle swarm optimization with crossover: a review and empirical analysis. Artif. Intell. Rev. 45(2), 131–165 (2016)

    Article  Google Scholar 

  16. Engelbrecht, A.: Inertia weight control strategies: particle roaming behavior. In: International Conference on Soft Computing and Machine Intelligence (2017)

    Google Scholar 

  17. Erwin, K., Engelbrecht, A.: A tuning free approach to multi-guide particle swarm optimization. In: Proceedings of the IEEE Swarm Intelligence Symposium (2021)

    Google Scholar 

  18. Gavana, A.: Global Optimisation Benchmarks. http://infinity77.net/global_optimization/index.html. Accessed 31 Mar 2022

  19. Harrison, K., Engelbrecht, A., Ombuki-Berman, B.: Inertia control strategies for particle swarm optimization: too much momentum, not enough analysis. Swarm Intell. 10(4), 267–305 (2016)

    Article  Google Scholar 

  20. Harrison, K., Engelbrecht, A., Ombuki-Berman, B.: Optimal parameter regions and the time-dependence of control parameter values for the particle swarm optimization algorithm. Swarm Evol. Comput. 41, 20–35 (2018)

    Article  Google Scholar 

  21. Harrison, K., Engelbrecht, A., Ombuki-Berman, B.: Self-adaptive particle swarm optimization: a review and analysis of convergence. Swarm Intell. 12, 187–226 (2018)

    Article  Google Scholar 

  22. Harrison, K., Ombuki-Berman, B., Engelbrecht, A.: Optimal parameter regions for particle swarm optimization algorithms. In: Proceedings of the IEEE Congress on Evolutionary Computation (2017)

    Google Scholar 

  23. Harrison, K.R., Ombuki-Berman, B.M., Engelbrecht, A.P.: An analysis of control parameter importance in the particle swarm optimization algorithm. In: Tan, Y., Shi, Y., Niu, B. (eds.) ICSI 2019. LNCS, vol. 11655, pp. 93–105. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26369-0_9

    Chapter  Google Scholar 

  24. Harrison, K., Ombuki-Berman, B., Engelbrecht, A.: The parameter configuration landscape: a case study on particle swarm optimization. In: Proceedings of the IEEE Congress on Evolutionary Computation (2019)

    Google Scholar 

  25. Jain, N., Nangia, U., Jain, J.: Impact of particle swarm optimization parameters on its convergence. In: Proceedings of the 2nd IEEE International Conference on Power Electronics, Intelligent Control and Energy Systems, pp. 921–926 (2018)

    Google Scholar 

  26. Jamil, M., Yang, X.S.: A literature survey of benchmark functions for global optimization problems. Int. J. Math. Model. Numer. Optim. 4(2), 150–194 (2013)

    MATH  Google Scholar 

  27. Jiang, M., Luo, Y., Yang, S.: Stochastic convergence analysis and parameter selection of the standard particle swarm optimization algorithm. Inf. Process. Lett. 102(1), 8–16 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN 1995-International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE (1995)

    Google Scholar 

  29. Klazar, R., Engelbrecht, A.: Parameter optimization by means of statistical quality guides in F-Race. In: Proceedings of the IEEE Congress on Evolutionary Computation (2014)

    Google Scholar 

  30. Liang, J., Qu, B., Suganthan, P.: Problem definitions and evaluation criteria for the CEC 2014 special session and competition on single objective real-parameter numerical optimization. Technical report. Tech. Rep. 201311. Zhengzhou University and Nanyang Technological University (2013)

    Google Scholar 

  31. Oldewage, E., Engelbrecht, A., Cleghorn, C.: Movement patterns of a particle swarm in high dimensions. Inf. Sci. 512, 1043–1062 (2020)

    Article  MATH  Google Scholar 

  32. Pedersen, M.: Good parameters for particle swarm optimization. Technical report. HL1001. Hvass Laboratories (2010)

    Google Scholar 

  33. Poli, R.: Mean and variance of the sampling distribution of particle swarm optimizers during stagnation. IEEE Trans. Evol. Comput. 14(4), 712–721 (2009)

    Article  Google Scholar 

  34. Poli, R., Broomhead, D.: Exact analysis of the sampling distribution for the canonical particle swarm optimiser and its convergence during stagnation. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 134–141 (2007)

    Google Scholar 

  35. Scheepers, C., Engelbrecht, A.P., Cleghorn, C.W.: Multi-guide particle swarm optimization for multi-objective optimization: empirical and stability analysis. Swarm Intell. 13(3–4), 245–276 (2019)

    Google Scholar 

  36. Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: Proceedings of the IEEE International Conference on Evolutionary Computation Proceedings, pp. 69–73 (1998)

    Google Scholar 

  37. Smith, S., Eiben, A.: Comparing parameter tuning methods for evolutionary algorithms. In: Proceedings of the IEEE Congress on Evolutionary Computation (2009)

    Google Scholar 

  38. Van den Bergh, F., Engelbrecht, A.: A study of particle swarm optimization particle trajectories. Inf. Sci. 176(8), 937–971 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andries Engelbrecht .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Engelbrecht, A. (2022). Stability-Guided Particle Swarm Optimization. In: Dorigo, M., et al. Swarm Intelligence. ANTS 2022. Lecture Notes in Computer Science, vol 13491. Springer, Cham. https://doi.org/10.1007/978-3-031-20176-9_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20176-9_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20175-2

  • Online ISBN: 978-3-031-20176-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics