Skip to main content

Best-of-N Collective Decisions on a Hierarchy

  • Conference paper
  • First Online:
Swarm Intelligence (ANTS 2022)

Abstract

The best-of-N problem in collective decision making is complex especially when the number of available alternatives is larger than a few, and no alternative distinctly shines over the others. Additionally, if the quality of the available alternatives is not a priori known and noisy, errors in the quality estimation may lead to the premature selection of sub-optimal alternatives. A typical speed-accuracy trade-off must be faced, which is hardened by the presence of several alternatives to be analyzed in parallel. In this study, we transform a one-shot best-of-N decision problem in a sequence of simpler decisions between a small number of alternatives, by organizing the decision problem in a hierarchy of choices. To this end, we construct an m-ary tree where the leaves represent the available alternatives, and high-level nodes group the low-level ones to present a low-dimension decision problem. Results from multi-agent simulations in both a fully-connected topology and in a spatial decision problem demonstrate that the sequential collective decisions can be parameterized to maximize speed and accuracy against different decision problems. A further improvement relies on an adaptive approach that automatically tunes the system parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For \(\kappa =1\), decision speed is very similar across different configurations, and the trade-off is dominated by solutions with high r that quickly converge to any option.

References

  1. Albani, D., Hönig, W., Nardi, D., Ayanian, N., Trianni, V.: Hierarchical task assignment and path finding with limited communication for robot swarms. Appl. Sci. 11(7), 3115 (2021)

    Article  Google Scholar 

  2. Albani, D., Manoni, T., Nardi, D., Trianni, V.: Dynamic UAV swarm deployment for non-uniform coverage. In: Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent Systems, AAMAS 2018, pp. 523–531 (2018)

    Google Scholar 

  3. Bareiss, D., van den Berg, J.: Generalized reciprocal collision avoidance. Int. J. Robot. Res. 34(12), 1501–1514 (2015)

    Article  Google Scholar 

  4. Bettstetter, C., Hartenstein, H., Pérez-Costa, X.: Stochastic properties of the random waypoint mobility model. Wirel. Netw. 10(5), 555–567 (2004)

    Article  Google Scholar 

  5. Bogacz, R.: Optimal decision-making theories: linking neurobiology with behaviour. Trends Cogn. Sci. 11(3), 118–125 (2007)

    Article  Google Scholar 

  6. Brown, S., Steyvers, M., Wagenmakers, E.J.: Observing evidence accumulation during multi-alternative decisions. J. Math. Psychol. 53(6), 453–462 (2009)

    Article  MathSciNet  Google Scholar 

  7. Busemeyer, J.R., Gluth, S., Rieskamp, J., Turner, B.M.: Cognitive and neural bases of multi-attribute, multi-alternative, value-based decisions. Trends Cogn. Sci. 23(3), 251–263 (2019)

    Article  Google Scholar 

  8. Cassey, T.C., Evens, D.R., Bogacz, R., Marshall, J.A.R., Ludwig, C.J.H.: Adaptive sampling of information in perceptual decision-making. PLoS ONE 8(11), e78993 (2013)

    Google Scholar 

  9. Gluth, S., Spektor, M.S., Rieskamp, J.: Value-based attentional capture affects multi-alternative decision making. eLife 7, e39659 (2018)

    Google Scholar 

  10. Jin, L., Rückin, J., Kiss, S.H., Vidal-Calleja, T., Popović, M.: Adaptive-resolution field mapping using Gaussian process fusion with integral kernels. IEEE Robot. Autom. Lett. 7(3), 7471–7478 (2022)

    Article  Google Scholar 

  11. Kameda, T., Toyokawa, W., Tindale, R.S.: Information aggregation and collective intelligence beyond the wisdom of crowds. Nat. Rev. Psychol. 1, 345–357 (2022)

    Article  Google Scholar 

  12. Kaplan, E.L., Meier, P.: Nonparametric estimation from incomplete observations. J. Am. Stat. Assoc. 53(282), 457–481 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  13. Oddi, F., Cristofaro, A., Trianni, V.: Videos associated to “Best-of-\(N\) collective decisions on a hierarchy” (2022). https://doi.org/10.5281/zenodo.6786939

  14. Pavlic, T.P., Hanson, J., Valentini, G., Walker, S.I., Pratt, S.C.: Quorum sensing without deliberation: biological inspiration for externalizing computation to physical spaces in multi-robot systems. Swarm Intell. 15(1–2), 171–203 (2021)

    Article  Google Scholar 

  15. Reina, A., Bose, T., Trianni, V., Marshall, J.A.R.: Psychophysical laws and the superorganism. Sci. Rep. 8(1), 4387–8 (2018)

    Google Scholar 

  16. Reina, A., Marshall, J.A.R., Trianni, V., Bose, T.: Model of the best-of-N nest-site selection process in honeybees. Phys. Rev. E 95(5), 052411–15 (2017)

    Google Scholar 

  17. Reina, A., Valentini, G., Fernández-Oto, C., Dorigo, M., Trianni, V.: A design pattern for decentralised decision making. PLoS ONE 10(10), e0140950–18 (2015)

    Google Scholar 

  18. Ross-Gillespie, A., Kümmerli, R.: Collective decision-making in microbes. Front. Microbiol. 5(54) (2014)

    Google Scholar 

  19. Rubenstein, M., Ahler, C., Hoff, N., Cabrera, A., Nagpal, R.: Kilobot: a low cost robot with scalable operations designed for collective behaviors. Robot. Auton. Syst. 62(7), 966–975 (2014)

    Article  Google Scholar 

  20. Russo, D., Van Roy, B.: An information-theoretic analysis of Thompson Sampling. J. Mach. Learn. Res. 17(1), 2442–2471 (2016)

    MathSciNet  MATH  Google Scholar 

  21. Saha, A., Marshall, J.A.R., Reina, A.: Memory and communication efficient algorithm for decentralized counting of nodes in networks. PLoS ONE 16(11), e0259736 (2021)

    Google Scholar 

  22. Sasaki, T., Pratt, S.C.: The psychology of superorganisms: collective decision making by insect societies. Annu. Rev. Entomol. 63(1), 259–275 (2018)

    Article  Google Scholar 

  23. Sridhar, V.H., et al.: The geometry of decision-making in individuals and collectives. Proc. Natl. Acad. Sci. U.S.A. 118(50), e2102157118 (2021)

    Google Scholar 

  24. Valentini, G., Ferrante, E., Dorigo, M.: The best-of-N problem in robot swarms: formalization, state of the art, and novel perspectives. Front. Robot. AI 4, 1–43 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

Vito Trianni acknowledges partial support from the project TAILOR (H2020-ICT-48 GA: 952215).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vito Trianni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Oddi, F., Cristofaro, A., Trianni, V. (2022). Best-of-N Collective Decisions on a Hierarchy. In: Dorigo, M., et al. Swarm Intelligence. ANTS 2022. Lecture Notes in Computer Science, vol 13491. Springer, Cham. https://doi.org/10.1007/978-3-031-20176-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20176-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20175-2

  • Online ISBN: 978-3-031-20176-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics