Skip to main content

Towards an Understanding of How Players Make Meaning from Post-Play Process Visualizations

  • Conference paper
  • First Online:
Entertainment Computing – ICEC 2022 (ICEC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13477))

Included in the following conference series:

Abstract

Player-facing, retrospective gameplay visualizations help players track progress and learn from others. Visualizations of a user’s step by step process, may be able to advance retrospective visualization. However, we currently do not know how players make meaning from process visualizations of game data. In this work, we take a first step towards addressing this gap by examining how players make meaning from process visualizations of other players’ gameplay. We identify two interpretation methods comprised of six techniques and discuss what these results mean for future use of player-facing process visualizations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Afonso, A.P., Carmo, M.B., Gonçalves, T., Vieira, P.: Visualeague: player performance analysis using spatial-temporal data. Multimedia Tools Appl. 78(23), 33069–33090 (2019)

    Article  Google Scholar 

  2. Ahmad, S., et al.: Modeling individual and team behavior through spatio-temporal analysis. In: Proceedings of the Annual Symposium on Computer-Human Interaction in Play, pp. 601–612 (2019)

    Google Scholar 

  3. Andersen, E., Liu, Y.E., Apter, E., Boucher-Genesse, F., Popović, Z.: Gameplay analysis through state projection. In: Proceedings of the Fifth International Conference on the Foundations of Digital Games, pp. 1–8 (2010)

    Google Scholar 

  4. Bodily, R., et al.: Open learner models and learning analytics dashboards: a systematic review. In: Proceedings of the 8th International Conference on Learning Analytics and Knowledge, pp. 41–50 (2018)

    Google Scholar 

  5. Bowman, B., Elmqvist, N., Jankun-Kelly, T.: Toward visualization for games: theory, design space, and patterns. IEEE Trans. Visual Comput. Graphics 18(11), 1956–1968 (2012)

    Article  Google Scholar 

  6. Campbell, J.L., Quincy, C., Osserman, J., Pedersen, O.K.: Coding in-depth semistructured interviews: problems of unitization and intercoder reliability and agreement. Sociol. Methods Res. 42(3), 294–320 (2013)

    Article  MathSciNet  Google Scholar 

  7. Cohen, J.: A coefficient of agreement for nominal scales. Educ. Psychol. Measur. 20(1), 37–46 (1960)

    Article  Google Scholar 

  8. El-Nasr, M.S., Durga, S., Shiyko, M., Sceppa, C.: Data-driven retrospective interviewing (ddri): a proposed methodology for formative evaluation of pervasive games. Entertainment Comput. 11, 1–19 (2015)

    Article  Google Scholar 

  9. El-Nasr, M.S., Nguyen, T.H.D., Canossa, A., Drachen, A.: Game Data Science. Oxford University Press (2021)

    Google Scholar 

  10. Endert, A., Hossain, M.S., Ramakrishnan, N., North, C., Fiaux, P., Andrews, C.: The human is the loop: new directions for visual analytics. Journal of intelligent information systems 43(3), 411–435 (2014)

    Google Scholar 

  11. Epstein, D., Cordeiro, F., Bales, E., Fogarty, J., Munson, S.: Taming data complexity in lifelogs: exploring visual cuts of personal informatics data. In: Proceedings of the 2014 Conference on Designing Interactive Systems, pp. 667–676 (2014)

    Google Scholar 

  12. Esteves, J., Valogianni, K., Greenhill, A.: Online social games: the effect of social comparison elements on continuance behaviour. Inform. Manage. 58(4), 103452 (2021)

    Article  Google Scholar 

  13. Gavin, H.: Thematic analysis. Understanding research methods and statistics in psychology, pp. 273–282 (2008)

    Google Scholar 

  14. Halabi, N., Wallner, G., Mirza-Babaei, P.: Assessing the impact of visual design on the interpretation of aggregated playtesting data visualization. In: Proceedings of the Annual Symposium on Computer-Human Interaction in Play, pp. 639–650 (2019)

    Google Scholar 

  15. Hazzard, E.: Data visualization in games (2014). https://erikhazzard.com/blog/game-development/data-visualization-in-games

  16. Horn, B., Hoover, A.K., Barnes, J., Folajimi, Y., Smith, G., Harteveld, C.: Opening the black box of play: Strategy analysis of an educational game. In: Proceedings of the 2016 Annual Symposium on Computer-Human Interaction in Play, pp. 142–153. ACM (2016)

    Google Scholar 

  17. Javvaji, N., Harteveld, C., Seif El-Nasr, M.: Understanding player patterns by combining knowledge-based data abstraction with interactive visualization. In: Proceedings of the Annual Symposium on Computer-Human Interaction in Play (2020)

    Google Scholar 

  18. Jemmali, C., Kleinman, E., Bunian, S., Almeda, M.V., Rowe, E., Seif El-Nasr, M.: Maads: Mixed-methods approach for the analysis of debugging sequences of beginner programmers. In: Proceedings of the 51st ACM Technical Symposium on Computer Science Education, pp. 86–92 (2020)

    Google Scholar 

  19. Kantharaju, P., Alderfer, K., Zhu, J., Char, B., Smith, B., Ontanón, S.: Tracing player knowledge in a parallel programming educational game. arXiv preprint arXiv:1908.05632 (2019)

  20. Kleinman, E., et al.: “and then they died”: Using action sequences for data driven, context aware gameplay analysis. In: International Conference on the Foundations of Digital Games. FDG ’20, Association for Computing Machinery, New York, NY, USA (2020)

    Google Scholar 

  21. Kleinman, E., El-Nasr, M.S.: Using data to “git gud": A push for a player-centric approach tothe use of data in esports (2021)

    Google Scholar 

  22. Kleinman, E., Preetham, N., Teng, Z., Bryant, A., Seif El-Nasr, M.: “what happened here!?" a taxonomy for user interaction with spatio-temporal game data visualization. Proceedings of the ACM on Human-Computer Interaction 5(CHI PLAY), 1–27 (2021)

    Google Scholar 

  23. Kleinman, E., Shergadwala, M.N., Seif El-Nasr, M.: Kills, deaths, and (computational) assists: Identifying opportunities for computational support in esport learning. In: CHI Conference on Human Factors in Computing Systems. CHI ‘22, Association for Computing Machinery, New York, NY, USA (2022). https://doi.org/10.1145/3491102.3517654

  24. Kuan, Y.T., Wang, Y.S., Chuang, J.H.: Visualizing real-time strategy games: The example of starcraft ii. In: 2017 IEEE Conference on Visual Analytics Science and Technology (VAST), pp. 71–80. IEEE (2017)

    Google Scholar 

  25. Landis, J.R., Koch, G.G.: The measurement of observer agreement for categorical data. biometrics, pp. 159–174 (1977)

    Google Scholar 

  26. Lee, S., Kim, S.H., Hung, Y.H., Lam, H., Kang, Y.a., Yi, J.S.: How do people make sense of unfamiliar visualizations?: A grounded model of novice’s information visualization sensemaking. IEEE Trans. Visualization Computer Graphics 22(1), 499–508 (2015)

    Google Scholar 

  27. Lin, X., Hmelo, C., Kinzer, C.K., Secules, T.J.: Designing technology to support reflection. Educa. Tech. Research Dev. 47(3), 43–62 (1999)

    Article  Google Scholar 

  28. Loh, B., Radinsky, J., Russell, E., Gomez, L.M., Reiser, B.J., Edelson, D.C.: The progress portfolio: Designing reflective tools for a classroom context. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 627–634 (1998)

    Google Scholar 

  29. Medler, B.: Player dossiers: Analyzing gameplay data as a reward. Game Studies 11(1) (2011)

    Google Scholar 

  30. Nguyen, T.H.D., El-Nasr, M.S., Canossa, A.: Glyph: Visualization tool for understanding problem solving strategies in puzzle games. In: FDG (2015)

    Google Scholar 

  31. Puussaar, A., Clear, A.K., Wright, P.: Enhancing personal informatics through social sensemaking. In: Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, pp. 6936–6942 (2017)

    Google Scholar 

  32. RPGLogs, L.: Warcraft logs (2013–2021). https://www.warcraftlogs.com/

  33. Saldaña, J.: The coding manual for qualitative researchers. Sage (2015)

    Google Scholar 

  34. Sandouka, K.: Interactive visualizations: A literature review. MWAIS 2019 Proceedings. p. 8 (2019)

    Google Scholar 

  35. Shneiderman, B.: The eyes have it: A task by data type taxonomy for information visualizations. In: Proceedings 1996 IEEE Symposium on Visual Languages, pp. 336–343. IEEE (1996)

    Google Scholar 

  36. Sjöblom, M., Hamari, J.: Why do people watch others play video games? an empirical study on the motivations of twitch users. Comput. Hum. Behav. 75, 985–996 (2017)

    Article  Google Scholar 

  37. Temkin, B.D.: Mapping the customer journey. Forrester Res. 3, 20 (2010)

    Google Scholar 

  38. Valiati, E.R., Pimenta, M.S., Freitas, C.M.: A taxonomy of tasks for guiding the evaluation of multidimensional visualizations. In: Proceedings of the 2006 AVI Workshop on Beyond time and Errors: Novel Evaluation Methods for Information Visualization, pp. 1–6 (2006)

    Google Scholar 

  39. Valls-Vargas, J., Zhu, J., Ontañón, S.: Graph grammar-based controllable generation of puzzles for a learning game about parallel programming. In: Proceedings of the 12th International Conference on the Foundations of Digital Games, pp. 1–10 (2017)

    Google Scholar 

  40. Van Der Aalst, W.: Process mining: overview and opportunities. ACM Trans. Manage. Inform. Syst. (TMIS) 3(2), 1–17 (2012)

    Article  Google Scholar 

  41. Van Der Aalst, W., et al.: Process Mining Manifesto. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM 2011. LNBIP, vol. 99, pp. 169–194. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28108-2_19

    Chapter  Google Scholar 

  42. van der Aalst, W., Adriansyah, A., van Dongen, B.: Causal nets: a modeling language tailored towards process discovery. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 28–42. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23217-6_3

    Chapter  Google Scholar 

  43. Villareale, J., F. Biemer, C., Seif El-Nasr, M., Zhu, J.: Reflection in game-based learning: A survey of programming games. In: International Conference on the Foundations of Digital Games, pp. 1–9 (2020)

    Google Scholar 

  44. Wallner, G., Kriglstein, S.: Visualizations for retrospective analysis of battles in team-based combat games: A user study. In: Proceedings of the 2016 Annual Symposium on Computer-Human Interaction in Play, pp. 22–32 (2016)

    Google Scholar 

  45. Wallner, G.: Play-graph: A methodology and visualization approach for the analysis of gameplay data. In: FDG, pp. 253–260 (2013)

    Google Scholar 

  46. White, S.A.: Introduction to bpmn. Ibm Cooperation 2(0), 0 (2004)

    Google Scholar 

  47. Yi, J.S., ah Kang, Y., Stasko, J., Jacko, J.A.: Toward a deeper understanding of the role of interaction in information visualization. IEEE transactions on visualization and computer graphics 13(6), 1224–1231 (2007)

    Google Scholar 

  48. Yi, J.S., Kang, Y.a., Stasko, J.T., Jacko, J.A.: Understanding and characterizing insights: how do people gain insights using information visualization? In: Proceedings of the 2008 Workshop on BEyond time and errors: novel evaLuation methods for Information Visualization, pp. 1–6 (2008)

    Google Scholar 

  49. Zhu, J., et al.: Programming in game space: how to represent parallel programming concepts in an educational game. In: Proceedings of the 14th International Conference on the Foundations of Digital Games, pp. 1–10 (2019)

    Google Scholar 

  50. Zhu, J., El-Nasr, M.S.: Open player modeling: Empowering players through data transparency. arXiv preprint arXiv:2110.05810 (2021)

Download references

Acknowledgements

This work is supported by the national Science Foundation (NSF) under Grant #1917855. The authors would like to thank all past and current members of the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erica Kleinman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kleinman, E. et al. (2022). Towards an Understanding of How Players Make Meaning from Post-Play Process Visualizations. In: Göbl, B., van der Spek, E., Baalsrud Hauge, J., McCall, R. (eds) Entertainment Computing – ICEC 2022. ICEC 2022. Lecture Notes in Computer Science, vol 13477. Springer, Cham. https://doi.org/10.1007/978-3-031-20212-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20212-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20211-7

  • Online ISBN: 978-3-031-20212-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics