Abstract
Hand pose estimation based on 2D RGB images has drawn increasing research interest due to its many practical applications, such as Human-Computer Interaction (HCI) and Virtual Reality (VR). However, most existing methods focus on learning hand structure and key point representations, which cannot well exploit the joint interdependency of 2D occluded hand pose estimation. In this paper, we propose an adaptive joint interdependency learning network (AJIL) for 2D occluded hand pose estimation by adaptively learning hand joint interdependency, including three sub-networks. First, a cascade multi-task mask-learning subnetwork is used to learn hand pose structure. Then, a modified transformer encoder is designed to exploit the high spatial relationship between the hand joints. Lastly, the joint correlation is obtained from the multi-view hand pose images via 21 long short-term memory (LSTM). Extensive studies on three widely used datasets including the CMU Panoptic Hand, Large-Scale Multiview Hand Pose, and also our newly established pen-holding hand pose (PHHP) images dataset which is conducted to evaluate our proposed method. Experimental results show that our proposed method can achieve a very competitive 2D hand pose estimation performance when compared with the baseline models.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Wang, Y., Peng, C., Liu, Y.: Mask-pose cascaded cnn for 2d hand pose estimation from single color image. IEEE Trans. Circ. Syst. Video Technol. 29(11), 3258–3268 (2018)
Chen, Y., et al.: Nonparametric structure regularization machine for 2D hand pose estimation. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 381–390 (2020)
Khaleghi, L., Moghaddam, A. S., Marshall, J., Etemad, A.: Multi-view video-based 3D hand pose estimation. arXiv preprint arXiv:2109.11747 (2021)
Ren, P., Sun, H., Hao, J., Wang, J., Qi, Q., Liao, J.: Mining multi-view information: a strong self-supervised framework for depth-based 3D hand pose and mesh estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20555–20565 (2022)
Cheng, W., Park, J.H., Ko, J.H.: HandFoldingNet: a 3D hand pose estimation network using multiscale-feature guided folding of a 2D hand skeleton. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 11260–11269 (2021)
Pan, T., Wang, Z., Fan, Y.: Optimized convolutional pose machine for 2D hand pose estimation. J. Visual Commun. Image Represent. 83, 103461 (2022)
Wei, S.E., Ramakrishna, V., Kanade, T., Sheikh, Y.: Convolutional pose machines. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4724–4732 (2016)
Fei, L., Zhao, S., Jia, W., Zhang, B., Wen, J., Xu, Y.: Toward efficient palmprint feature extraction by learning a single-layer convolution network. IEEE Trans. Neural Netw. Learn. Syst. (2022)
Fei, L., Zhang, B., Zhang, L., Jia, W., Wen, J., Wu, J.: Learning compact multifeature codes for palmprint recognition from a single training image per palm. IEEE Trans. Multimedia 23, 2930–2942 (2020)
Santavas, N., Kansizoglou, I., Bampis, L., Karakasis, E., Gasteratos, A.: Attention! a lightweight 2d hand pose estimation approach. IEEE Sens. J. 21(10), 11488–11496 (2020)
Simon, T., Joo, H., Matthews, I., Sheikh, Y.: Hand keypoint detection in single images using multiview bootstrapping. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1145–1153 (2017)
Joo, H., et al.: Panoptic studio: a massively multiview system for social motion capture. In Proceedings of the IEEE International Conference on Computer Vision, pp. 3334–3342 (2015)
Gomez-Donoso, F., Orts-Escolano, S., Cazorla, M.: Large-scale multiview 3D hand pose dataset. Image Vision Comput. 81, 25–33 (2019)
Acknowledgments
This work was supported in part by the Guangzhou Science and technology plan project under Grant 202002030110, and in part by the National Natural Science Foundation of China under Grant 62176066 and Grant 62106052.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Wu, P., Fei, L., Zhao, S., Kang, P., Teng, S., Fang, X. (2022). Adaptive Joint Interdependency Learning for 2D Occluded Hand Pose Estimation. In: Deng, W., et al. Biometric Recognition. CCBR 2022. Lecture Notes in Computer Science, vol 13628. Springer, Cham. https://doi.org/10.1007/978-3-031-20233-9_22
Download citation
DOI: https://doi.org/10.1007/978-3-031-20233-9_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20232-2
Online ISBN: 978-3-031-20233-9
eBook Packages: Computer ScienceComputer Science (R0)