Skip to main content

Adaptive Enhanced Micro-expression Spotting Network Based on Multi-stage Features Extraction

  • Conference paper
  • First Online:
Biometric Recognition (CCBR 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13628))

Included in the following conference series:

Abstract

When micro-expressions are mixed with normal or macro-expressions, it becomes increasingly challenging to spot them in long videos. Aiming at the specific time prior of Micro-expression (ME)s, a ME spotting network called AEM-Net (Adaptive Enhanced ME Detection Network) is proposed. The network improves the spotting performance in the following four aspects. First, the multi-stage channel feature extraction module is proposed to extract feature information of different depths. Then, an attention spatial-temporal module was used to obtain salient and discriminative micro-expression segments while suppressing the generation of excessively long or short suggestions. Thirdly, a ME-NMS (Non-Maximum Suppression) network is developed to reduce redundancy and decision errors. Finally, two spotting mechanisms named anchor_based and anchor_free are combined in our method. Extensive experiments have done on prevalent \(\mathrm CAS(ME)^2\) and the SAMM-Long ME databases to evaluate the spotting performance. The results show that the AEM-Net achieves an impressive performance, which outperforms other state-of-the-art methods.

Z. Xie—This work is supported by the National Nature Science Foundation of China (No. 61861020), the Jiangxi Province Graduate Innovation Special Fund Project (No. YC2021-X06).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Porter, S., Brinke, L.: Reading between the lies: identifying concealed and falsified emotions in universal facial expressions. Psychol. Sci. 19(5), 508–514 (2008)

    Google Scholar 

  2. Ekman, P., Friesen, W. V.: Nonverbal leakage and clues to deception. Psychiatry 32(1), 88–106 (1969)

    Google Scholar 

  3. Porter, S., Brinke, L.: Reading between the lies identifying concealed and falsified emotions in universal facial expressions. Psychol. Sci. 19(5), 508–514 (2008)

    Google Scholar 

  4. Zhang, Z., Chen, T. H., Liu, G., Fu, X.: SMEconvnet: a convolutional neural network for spotting spontaneous facial micro-expression from long videos. IEEE Access 6(71), 143–171 (2018)

    Google Scholar 

  5. Antti, M., Guoying, Z., Matti, P.: Spotting rapid facial movements from videos using appearance-based feature difference analysis. In: International Conference on Pattern Recognition, pp. 1722–1727 (2014)

    Google Scholar 

  6. Adrian, D.K., Moi, Y.H., Cliff, L.: Micro-facial movement detection using individualised baselines and histogram based descriptors. In: International Conference on Systems, Man, and Cybernetics, pp. 1864–1869 (2015)

    Google Scholar 

  7. Adrian, D., Walied, M., Cliff, L., Choon, N.C., Moi, Y.H.: Objective micro-facial movement detection using FACS-based regions and baseline evaluation. In: International Conference on Automatic Face and Gesture Recognition (FG), pp. 642–649 (2018)

    Google Scholar 

  8. Devangini, P., Guoying, Z., Matti, P.: Spatiotemporal integration of optical flow vectors for micro-expression detection. In: International Conference on Advanced Concepts for Intelligent Vision Systems, pp. 369–380 (2015)

    Google Scholar 

  9. Thuong, T.K., Xiaopeng, H., Guoying, Z.: Sliding window based micro-expression spotting: a benchmark. In: International Conference on Advanced Concepts for Intelligent Vision Systems, pp. 542–553 (2017)

    Google Scholar 

  10. Sujing, W., Shuhuang, W., Xingsheng, Q., Jingxiu, L., Xiaolan, F.: A main directional maximal difference analysis for spotting facial movements from long-term videos. Neurocomputing 382–389 (2017)

    Google Scholar 

  11. Genbing, L., See, J., Laikuan, W.: Shallow optical flow three-stream CNN for macro-and micro-expression spotting from long videos. In: ICIP, pp. 2643–2647 (2021)

    Google Scholar 

  12. Wangwang, Y., Jingwen, J., Yongjie, L.: LSSNET: a two-stream convolutional neural network for spotting macro-and micro-expression in long videos. In: ACM Conference on Multimedia, pp. 4745–4749 (2021)

    Google Scholar 

  13. Xiaolong, W., Girshick, R., Gupta, A., Kaiming, H.: Non-local neural networks. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 7794–7803 (2018)

    Google Scholar 

  14. Li, J., Soladie, C., Seguier, R., Wang, S.-J., Yap, M.H.: Spotting micro-expressions on long videos sequences. In: IEEE International Conference on Automatic Face and Gesture Recognition, pp. 1–5 (2019)

    Google Scholar 

  15. Qu, F., Wang, S.J., Yan, W. J., Li, H., Wu, S., Fu, X.: CAS(ME) 2: a database for spontaneous macro-expression and micro-expression spotting and recognition. IEEE Trans. Affect. Comput. 9(4), 424–436 (2017)

    Google Scholar 

  16. Yap, C., Kendrick, C., Yap, M.: SAMM long videos: a spontaneous facial micro-and macro-expressions dataset. In: 2020 15th IEEE International Conference on Automatic Face and Gesture Recognition, pp. 194–199 (2020)

    Google Scholar 

  17. Yap, C., Yap, M., Davison, A., Cunningham, R.: 3D-CNN for facial micro- and macro-expression spotting on long video sequences using temporal oriented reference frame. arXiv:2105.06340 (2021)

  18. Wang, S., He, Y., Li, J., Fu, X.: MESNet: a convolutional neural network for spotting multi-scale micro-expression intervals in long videos. IEEE Trans. Image Process. 3956–3969 (2021)

    Google Scholar 

  19. Zhang, L., et al.: Spatio-temporal fusion for macro-and micro-expression spotting in long video sequences. In: 2020 15th IEEE International Conference on Automatic Face and Gesture Recognition, pp. 245–252 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihua Xie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xie, Z., Cheng, S., Liu, X., Fan, J. (2022). Adaptive Enhanced Micro-expression Spotting Network Based on Multi-stage Features Extraction. In: Deng, W., et al. Biometric Recognition. CCBR 2022. Lecture Notes in Computer Science, vol 13628. Springer, Cham. https://doi.org/10.1007/978-3-031-20233-9_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20233-9_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20232-2

  • Online ISBN: 978-3-031-20233-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics