Skip to main content

Hemispheric Asymmetry Measurement Network for Emotion Classification

  • Conference paper
  • First Online:
Biometric Recognition (CCBR 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13628))

Included in the following conference series:

Abstract

Electroencephalogram (EEG) based emotion recognition has received considerable attention from many researchers. Methods based on deep learning have made significant progress. However, most of the existing solutions still need to use manually extracted features as the input to train the network model. Neuroscience studies suggest that emotion reveals asymmetric differences between the left and right hemispheres of the brain. Inspired by this fact, we proposed a hemispheric asymmetry measurement network (HAMNet) to learn discriminant features for emotion classification tasks. Our network is end-to-end and reaches the average accuracy of 96.45%, which achieves the state-of-the-art (SOTA) performance. Moreover, the visualization and analysis of the learned features provides a possibility for neuroscience to study the mechanism of emotion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ali, M., Mosa, A.H., Machot, F.A., Kyamakya, K.: EEG-based emotion recognition approach for e-healthcare applications. In: 2016 Eighth International Conference on Ubiquitous and Future Networks (ICUFN), pp. 946–950. IEEE Press (2016)

    Google Scholar 

  2. Kothe, C.A., Makeig, S.: Estimation of task workload from EEG data: new and current tools and perspectives. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 6547–6551. IEEE Press (2011)

    Google Scholar 

  3. Kessous, L., Castellano, G., Caridakis, G.: Multimodal emotion recognition in speech-based interaction using facial expression, body gesture and acoustic analysis. J. Multimodal User Interf. 3(1), 33–48 (2010)

    Article  Google Scholar 

  4. Yang, Y., Wu, Q., Qiu, M., Wang, Y., Chen, X.: Emotion recognition from multi-channel EEG through parallel convolutional recurrent neural network. In: 2018 International Joint Conference on Neural Networks (IJCNN), pp. 1–7. IEEE Press (2018)

    Google Scholar 

  5. Alhagry, S., Fahmy, A.A., El-Khoribi, R.A.: Emotion recognition based on EEG using LSTM recurrent neural network. Emotion 8(10), 355–358 (2017)

    Google Scholar 

  6. Zheng, W.L., Lu, B.L.: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks. IEEE Trans. Autonom. Mental Dev. 7(3), 162–175 (2015)

    Google Scholar 

  7. Shi, L.C., Jiao, Y.Y., Lu, B.L.: Differential entropy feature for EEG-based vigilance estimation. In: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 6627–6630. IEEE Press (2013)

    Google Scholar 

  8. Alarcao, S.M., Fonseca, M.J.: Emotions recognition using EEG signals: a survey. IEEE Trans. Affect. Comput. 10(3), 374–393 (2017)

    Article  Google Scholar 

  9. Keil, A., Müller, M.M., Gruber, T., et al.: Effects of emotional arousal in the cerebral hemispheres: a study of oscillatory brain activity and event-related potentials. J. Clin. Neurophysiol. 112(11), 2057–2068 (2001)

    Article  Google Scholar 

  10. Balconi, M., Lucchiari, C.: Consciousness and arousal effects on emotional face processing as revealed by brain oscillations. a gamma band analysis. Int. J. Psychophysiol. 67(1), 41–46 (2008)

    Google Scholar 

  11. Duan, R.N., Zhu, J.Y., Lu, B.L.: Differential entropy feature for EEG-based emotion classification. In: 6th International IEEE/EMBS Conference on Neural Engineering. IEEE 2013, pp. 81–84 (2013)

    Google Scholar 

  12. Niu, X., Lu, N., Kang, J.H., Cui, Z.Y.: Knowledge-driven feature component interpretable network for motor imagery classification. J. Neural Eng. 19(1), 016032 (2022)

    Article  Google Scholar 

  13. Zheng, W.L., Zhu, J.Y., Lu, B.L.: Identifying stable patterns over time for emotion recognition from EEG. J. IEEE Trans. Affective Comput. 10(3), 417–429 (2017)

    Article  Google Scholar 

  14. Xiao, G., Shi, M., Ye, M., et al.: 4D attention-based neural network for EEG emotion recognition. J. Cogn. Neurodyn. 2022, 1–14 (2022). https://doi.org/10.1007/s11571-021-09751-5

  15. Li, Y., Wang, L., Zheng, W., et al.: A novel bi-hemispheric discrepancy model for EEG emotion recognition. IEEE Trans. Cogn. Dev. Syst. 13(2), 354–367 (2020)

    Article  Google Scholar 

Download references

Acknowledgement

This work is supported by National Natural Science Foundation of China grant 61876147.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Na Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yan, R., Lu, N., Niu, X., Yan, Y. (2022). Hemispheric Asymmetry Measurement Network for Emotion Classification. In: Deng, W., et al. Biometric Recognition. CCBR 2022. Lecture Notes in Computer Science, vol 13628. Springer, Cham. https://doi.org/10.1007/978-3-031-20233-9_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20233-9_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20232-2

  • Online ISBN: 978-3-031-20233-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics