Skip to main content

Gait Recognition by Sensing Insole Using a Hybrid CNN-Attention-LSTM Network

  • Conference paper
  • First Online:
Biometric Recognition (CCBR 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13628))

Included in the following conference series:

Abstract

Gait recognition has become a necessary integral part of emerging smart wearables. However, considering the limitations of wearable sensing, improving the recognition performance remains an open question. In this work, we tackle the problem of gait recognition by using a large set of multimodal sensing insole data from sixty-two participants reflecting kinetic and kinematic variables of natural gait outdoors. We used this dataset to leverage a novel recognition method involving a deep architecture combining a convolutional neural network, a long short-term memory network, and attention embedding. It allows grasping the temporal-spatial gait features completely. An essential part of this work is the comparative performance exploration of fixed-length and gait-cycle segmentation. The proposed framework allows accuracy of 99.73% when using gait-cycle segmentation. The results confirm that the hybrid deep learning model using multisensory, multimodal data can be effectively applied for identity recognition in an unconstrained environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shaheed, K., et al.: A systematic review on physiological-based biometric recognition systems: current and future trends. Archives of Computational Methods in Engineering 28(7), 4917–4960 (2021). https://doi.org/10.1007/s11831-021-09560-3

    Article  Google Scholar 

  2. Wan, C., Wang, L., Phoha, V.V. (eds.).: A Survey on Gait Recognition. ACM Computing Surveys (CSUR) 51(5), 1–35 (2018)

    Google Scholar 

  3. Wang, C., Li, Z., Sarpong, B.: Multimodal adaptive identity-recognition algorithm fused with gait perception. Big Data Mining and Analytics. 4(4), 223–232 (2021)

    Article  Google Scholar 

  4. Zeng, X., Zhang, X., Yang, S., Shi, Z., Chi, C.: Gait-based implicit authentication using edge computing and deep learning for mobile devices. Sensors. 21(13), 4592 (2021)

    Article  Google Scholar 

  5. Zou, Y., Libanori, A., Xu, J., Nashalian, A., Chen, J.: Triboelectric Nanogenerator Enabled Smart Shoes for Wearable Electricity Generation. Research. 2020 (2020)

    Google Scholar 

  6. Ivanov, K., et al.: Design of a Sensor Insole for Gait Analysis. In: Yu, H., Liu, J., Liu, L., Ju, Z., Liu, Y., Zhou, D. (eds.) ICIRA 2019. LNCS (LNAI), vol. 11743, pp. 433–444. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-27538-9_37

    Chapter  Google Scholar 

  7. Ivanov, K., et al.: Identity recognition by walking outdoors using multimodal sensor insoles. IEEE Access. 8, 150797–150807 (2020)

    Article  Google Scholar 

  8. Guo, X.X., Yang, H.Z.: An improved compromise for soft/hard thresholds in wavelet denoising. CAAI Transactions on Intelligent Systems. 222–225 (2008)

    Google Scholar 

  9. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  10. Wang, T., Xia, Y., Zhang, D.: Human gait recognition based on convolutional neural network and attention model. Chinese Journal of Sensors and Actuators. 32(07), 1027–1033 (2019)

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by Key R&D support projects of the Chengdu Science and Technology Bureau (No. 2021-YF05-02175-SN) and by the funding of the China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanyong Mei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yue, J., Mei, Z., Ivanov, K., Li, Y., He, T., Zeng, H. (2022). Gait Recognition by Sensing Insole Using a Hybrid CNN-Attention-LSTM Network. In: Deng, W., et al. Biometric Recognition. CCBR 2022. Lecture Notes in Computer Science, vol 13628. Springer, Cham. https://doi.org/10.1007/978-3-031-20233-9_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20233-9_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20232-2

  • Online ISBN: 978-3-031-20233-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics