Skip to main content

Identity Authentication Using a Multimodal Sensing Insole—A Feasibility Study

  • Conference paper
  • First Online:
Biometric Recognition (CCBR 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13628))

Included in the following conference series:

  • 1084 Accesses

Abstract

With the development of intelligent electronic devices, users pay more attention to personal information privacy. Among human biometrics, gait does not require user cooperation and is difficult to imitate, making it suitable for implementing highly secure identity authentication. In this work, we demonstrate the application of a multimodal sensing insole for person authentication. For dataset preparation, fixed-length and gait-cycle segmentation were applied. We used a deep learning method to classify the legal user and imposters. The data from twenty subjects were used to train and test models. An average accuracy of more than 99% was achieved. Results confirm the feasibility and effectiveness of using the sensing insole for gait identity authentication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu, J., Sun, W.: Smart attacks against intelligent wearables in people-centric internet of things. IEEE Commun. Mag. 54, 44–49 (2016)

    Article  Google Scholar 

  2. Ahmad, M., Khan, A.M., Brown, J.A., Protasov, S., Khattak, A.M.: Gait fingerprinting-based user identification on smartphones. In: 2016 International Joint Conference on Neural Networks (IJCNN), pp. 3060–3067 (2016)

    Google Scholar 

  3. Papavasileiou, I., Qiao, Z., Zhang, C., Zhang, W., Bi, J., Han, S.: GaitCode: gait-based continuous authentication using multimodal learning and wearable sensors. Smart Health. 19, 100162 (2021)

    Article  Google Scholar 

  4. He, L., Ma, C., Tu, C., Zhang, Y.: Gait2Vec: continuous authentication of smartphone users based on gait behavior. In: 2022 IEEE 25th International Conference on Computer Supported Cooperative Work in Design (CSCWD), pp. 280–285 (2022)

    Google Scholar 

  5. Cola, G., Vecchio, A., Avvenuti, M.: Continuous authentication through gait analysis on a wrist-worn device. Pervasive Mobile Comput. 78, 101483 (2021)

    Article  Google Scholar 

  6. Ivanov, K., et al.: Identity recognition by walking outdoors using multimodal sensor insoles. IEEE Access 8, 150797–150807 (2020)

    Article  Google Scholar 

  7. Ivanov, K., et al.: Design of a sensor insole for gait analysis. In: Yu, H., Liu, J., Liu, L., Ju, Z., Liu, Y., Zhou, D. (eds.) ICIRA 2019. LNCS (LNAI), vol. 11743, pp. 433–444. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-27538-9_37

    Chapter  Google Scholar 

  8. Liu, R., Duan, Z., Zhou, J., Liu, M.: Identification of individual walking patterns using gait acceleration. In: 2007 1st International Conference on Bioinformatics and Biomedical Engineering, pp. 543–546 (2007)

    Google Scholar 

  9. Derawi, M.O., Bours, P., Holien, K.: Improved cycle detection for accelerometer based gait authentication. In: 2010 Sixth International Conference on Intelligent Information Hiding and Multimedia Signal Processing, pp. 312–317 (2010)

    Google Scholar 

  10. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by Key R&D support projects of the Chengdu Science and Technology Bureau (No.2021-YF05-02175-SN) and by the funding of the China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanyong Mei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zeng, H. et al. (2022). Identity Authentication Using a Multimodal Sensing Insole—A Feasibility Study. In: Deng, W., et al. Biometric Recognition. CCBR 2022. Lecture Notes in Computer Science, vol 13628. Springer, Cham. https://doi.org/10.1007/978-3-031-20233-9_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20233-9_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20232-2

  • Online ISBN: 978-3-031-20233-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics